Skip to main content

Single Molecule Spectroscopy of Pigment Protein Complexes from Purple Bacteria

  • Chapter
Chlorophylls and Bacteriochlorophylls

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 25))

Abstract

In bacterial photosynthesis, light energy is absorbed by a network of antenna pigment proteins and efficiently transferred to the photochemical reaction center where a charge separation takes place providing the free energy for subsequent chemical reactions. Most photosynthetic purple bacteria contain two types of antenna complexes: light-harvesting complex 1 (LH1) and light-harvesting complex 2 (LH2). It is known that the photochemical reaction center is closely associated with the LH1 complex while the LH2 complexes are arranged around the perimeter of LH1 in a two-dimensional structure. The transfer of energy from LH2 to LH1 and subsequently to the reaction center occurs in vivo on a time scale of 30–40 ps, i.e., very fast compared to the decay of an isolated LH2 which has a fluorescence lifetime of about 1 ns. As yet, there is no consensus about the details of the mechanisms of the energy-transfer process, and the full three-dimensional structure of the whole photosynthetic unit is still unknown. The great difficulty encountered when determining the various parameters that play a role in the description of the electronic structure of light-harvesting complexes and the process of energy transfer, is the fact that the optical absorption lines are inhomogeneously broadened as a result of heterogeneity in the ensemble of absorbing pigments. To circumvent this problem we have applied single-molecule detection schemes to study the pigment-protein complexes individually thereby avoiding ensemble averaging. Here we present an overview of our work on LH1 and LH2 from Rhodopseudomonas acidophila.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alden RG, Johnson E, Nagarajan V, Parson WW, Law CJ and Cogdell RJ (1997) Calculations of spectroscopic properties of the LH2 bacteriochlorophyll-protein antenna complex from Rhodopseudomonas acidophila. J Phys Chem B 101: 4667–4680

    Article  CAS  Google Scholar 

  • Barz WP, Francia SF, Venturoli G, Melandri BA, Vermeglio A and Oesterhelt D (1995) Role of PufX protein in photosynthetic growth of Rhodobacter sphaeroides. Photophosphorylation under anaerobic conditions' 1. PufX is required for efficient light-driven electron transfer and photophosphorylation under anaerobic conditions. Biochemistry 34: 15235–15247

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Sciences, Oxford

    Google Scholar 

  • Bopp MA, Sytnik A, Howard TD, Cogdell RJ and Hochstrasser RM (1999) The dynamics of structural deformations of immobilized single light-harvesting complexes. Proc Natl Acad Sci 96: 11271–11276

    Article  PubMed  CAS  Google Scholar 

  • Cogdell RJ, Fyfe PK, Barrett SJ, Prince SM, Freer AA, Isaacs NW, McGlynn P and Hunter CN (1996) The purple bacterial photosynthetic unit. Photosynth Res 48: 55–63

    Article  CAS  Google Scholar 

  • Farchaus JW, Barz WP, Grunberg H and Oesterhelt, D (1992) Studies on the expression of the PufX polypeptide and its requirement for photoheterotrophic growth in Rhodobacter sphaeroides. EMBO J 11: 2779–2788

    PubMed  CAS  Google Scholar 

  • Francia F, Wang J, Venturoli G, Melandri BA, Barz WP and Oesterhelt D (1999) The reaction center-LH1 antenna complex of Rhodobacter sphaeroides contains one PufX molecule which is involved in dimerization of this complex. Biochemistry 38: 6834–6845

    Article  PubMed  CAS  Google Scholar 

  • Francke C and Amesz J (1995) The size of the photosynthetic unit in purple bacteria. Photosynth Res 46: 347–352

    Article  CAS  Google Scholar 

  • Freiberg A, Timpmann K, Ruus R and Woodbury NW (1999) Disordered exciton analysis of linear and nonlinear absorption spectra of antenna bacteriochlorophyll aggregates: LH2-only mutant chromatophores of Rhodobacter sphaeroides at 8 K under spectrally selective excitation, J Phys Chem B 103: 10032–10041

    Article  CAS  Google Scholar 

  • Ghosh R, Ghosh-Eicher S, DiBeradino M and Bachofen R (1994) Protein phosphorylation in rubrum: Purification and characterization of a water-soluble Rhodospirillum B873 protein kinase and a new component of the B873 complex,ω, which can be phosphorylated. Biochim Biophys Acta 1184: 28–36

    Article  CAS  Google Scholar 

  • Hofmann C, Ketelaars M, Matsushita M, Michel H, Aartsma TJ and Köhler J (2003) Single molecule study of the electronic couplings in a circular array of molecules: Light harvesting 2 complex from Rhodospirillum molischianum. Phys Rev Lett 90: 013004–1–013004–4

    Google Scholar 

  • Hu X, Ritz T, Damjanovic A, Autenrieth F and Schulten K (2002) Photosynthetic apparatus of purple bacteria. Quart Rev Biophys 35: 1–62

    Article  CAS  Google Scholar 

  • Jang S, Dempster SE and Silbey RJ. (2001) Characterization of the static disorder in the B850 band of LH2. J Phys Chem B 105: 6655–6665

    Article  CAS  Google Scholar 

  • Jungas C, Ranck J-L, Rigaud J-L, Joliot P and Vermeglio A (1999) Supramolecular organization of the photosynthetic apparatus of Rhodobacter sphaeroides. EMBO J 18: 534–542

    Article  PubMed  CAS  Google Scholar 

  • Karrasch S, Bullough PA and Ghosh R (1995) The 8.5 Å projection map of the light harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. EMBO J 14: 631–638

    PubMed  CAS  Google Scholar 

  • Kennis JTM, Streltsov AM, Aartsma TJ, Nozawa T and Amesz J (1996) Energy transfer and excition coupling in isolated B800–850 complexes of the photosynthetic purple sulfur bacterium chromatium tepidum. The effect of structural symmetry on bacteriochlorophyll excited states. J Phys Chem C 100: 2438–2442

    Article  CAS  Google Scholar 

  • Kennis JTM, Streltsov AM, Permentier H, Aartsma TJ and Amesz J (1997a) Exciton coherence and energy transfer in the LH2 antenna complex of Rhodopseudomonas acidophila at low temperature. J Phys Chem B 101: 8369–8374

    Article  CAS  Google Scholar 

  • Kennis JTM, Streltsov AM, Vulto SIE, Aartsma TJ, Nozawa T and Amesz J (1997b) Femtosecond dynamics in isolated LH2 complexes of various species of purple bacteria. J Phys Chem B 101: 7827–7834

    Article  CAS  Google Scholar 

  • Ketelaars M., van Oijen AM, Matsushita M, Köhler J, Schmidt J and Aartsma TJ (2001) Spectroscopy on the B850 band of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila; I. Experiments and Monte-Carlo simulations. Biophys J 80: 1591–1603

    PubMed  CAS  Google Scholar 

  • Ketelaars M, Hofmann C, Köhler J, Howard TD, Cogdell RJ, Schmidt J and Aartsma TJ (2002) Spectroscopy on individual light-harvesting 1 complexes of Rhodopseudomonas acidophila. Biophys J 83: 1701–1715

    PubMed  CAS  Google Scholar 

  • Koepke J, Hu X, Muenke C, Schulten K and Michel H (1996) The crystal structure of the light harvesting complex II (B800-B850) from Rhodospirillum molischianum. Structure 4: 581–597

    Article  PubMed  CAS  Google Scholar 

  • Kühn O and Sundström V (1997) Pump probe spectroscopy of dissipative energy transfer dynamics in photosynthetic antenna complexes: A density matrix approach. J Chem Phys 107: 4154–4164

    Article  Google Scholar 

  • Lilburn TG, Haith CE, Prince RC and Beatty TJ (1992) Pleiotropic effects of pufX gene deletion on the structure and function of the photosynthetic apparatus of Rhodobacter capsulatus. Biochim Biophys Acta 1100: 160–170

    Article  PubMed  CAS  Google Scholar 

  • Matsushita M, Ketelaars M, van Oijen AM, Köhler J, Aartsma TJ and Schmidt J (2001) Spectroscopy on the B850 band of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila; II. Exciton states of an elliptically deformed ring aggregate. Biophys J 80: 1604–1614

    PubMed  CAS  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521

    Article  CAS  Google Scholar 

  • Mcluskey K, Prince SM, Cogdell RJ and Isaacs NW (2001) The crystallographic structure of the B800-820 LH3 light-harvesting complex from the purple bacteria Rhodopseudomonas acidophila strain 7050. Biochemistry 40: 8783–8789

    Article  PubMed  CAS  Google Scholar 

  • Monshouwer R, Abrahamson M, van Mourik F and van Grondelle R (1997) Superradiance and exciton delocalization in bacterial photosynthetic light-harvesting systems. J Phys Chem B 101: 7241–7248

    Article  CAS  Google Scholar 

  • Mostovoy, MV and Knoester J (2000) Statistics of optical spectra from single ring aggregates and its application to LH2. J Phys Chem B 104: 12355–12364

    Article  CAS  Google Scholar 

  • Novoderezhkin, VI and Razjivin AP (1995) Exciton dynamics in circular aggregates: Application to antenna of photosynthetic purple bacteria- Biophys J 68: 1089–1100

    Article  PubMed  CAS  Google Scholar 

  • Papiz MZ, Prince AM, Hawthornthwaite-Lawless AM, McDermott G, Freer AA, Isaacs NW and Cogdell RJ (1996) A model for the photosynthetic apparatus of purple bacteria. Trends Plant Sci 1: 198–206

    Article  Google Scholar 

  • Pullerits T, Chachisvillis M and Sundström V (1996) Exciton delocalization length in the B850 antenna of Rhodobacter sphaeroides. J Phys Chem 100: 10787–10792

    Article  CAS  Google Scholar 

  • Qians P, Agura T, Oyama Y and Cogdell RJ (2000) Isolation and purification of the reaction center (RC) and the core (RC-LH1) complex from Rhodobium marinum: The LH1 ring of the detergent-solubilized core complex contains 32 bacterio chlorophylls. Plant Cell Physiol 41: 1347–1353

    Article  Google Scholar 

  • Rigler R, Orrit M and Baschè T (eds) (2001) Single Molecule Spectroscopy, Nobel Conference Lectures, Springer-Series in Chemical Physics. Springer-Verlag, Berlin

    Google Scholar 

  • Sauer K, Cogdell RJ, Prince SM, Freer AA, Isaacs NW and Scheer H (1996) Structure based calculations of the optical spectra of the LH2 bacteriochlorophyll-protein complex from Rhodopseudomonas acidophila. Photochem Photobiol 64: 564–576

    CAS  Google Scholar 

  • Schulten K (1999) From simplicity to complexity and back: Function, architecture and mechanism of light harvesting systems in photosynthetic bacteria. In: Frauenfelder H, Deisenhofer J and Wolynes PG (eds) Simplicity and Complexity in Proteins and Nucleic Acids, pp 227–253. Dahlem University Press, Berlin

    Google Scholar 

  • Stahlberg H, Dubochet J, Vogel H and Ghosh R (1998) The reaction centre of the photounit of Rhodospirillum rubrum is anchored to the light-harvesting complex with four-fold rotational disorder. Photosynth Res 55: 363–368

    Article  CAS  Google Scholar 

  • Sundström V, Pullerits T and van Grondelle R (1999) Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J Phys Chem B 103: 2327–2346

    Article  Google Scholar 

  • Tietz C, Gerken U, Jelezko F and Wrachtrup J (2000) Polarization measurements on single pigment protein complexes. Single Molecules 1: 67–72

    Article  CAS  Google Scholar 

  • van Amerongen H, Valkunas L and van Grondelle R (2000) Photosynthetic Excitons. World Scientific Publishing Co., Singapore

    Google Scholar 

  • van Oijen AM, Ketelaars M, Köhler J, Aartsma TJ and Schmidt J (1998) Spectroscopy of single light-harvesting complexes from purple photosynthetic bacteria at 1.2 K. J Phys Chem B 102: 9363–9366

    Article  Google Scholar 

  • van Oijen AM, Ketelaars M, Köhler J, Aartsma TJ and Schmidt J (1999a) Unraveling the electronic structure of individual photosynthetic pigment-protein complexes. Science 285: 400–402

    Article  Google Scholar 

  • van Oijen AM, Ketelaars M, Köhler J, Aartsma TJ and Schmidt J (1999b) Spectroscopy of individual LH2 complexes of Rhodopseudomonas acidophila: Localized excitations in the B800 band. Chem Phys 247: 53–60

    Article  Google Scholar 

  • Walz T, Jamieson SJ, Bowers CM, Bullough PA and Hunter CN (1998) Projection structures of three photosynthetic complexes from Rhodobacter Sphaeroides: LH2 at 6 Angstrom LH1 and RC-LH1 at 25 Angstrom. J Mol Biol 282: 833–845

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Köhler, J., Aartsma, T.J. (2006). Single Molecule Spectroscopy of Pigment Protein Complexes from Purple Bacteria. In: Grimm, B., Porra, R.J., Rüdiger, W., Scheer, H. (eds) Chlorophylls and Bacteriochlorophylls. Advances in Photosynthesis and Respiration, vol 25. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4516-6_21

Download citation

Publish with us

Policies and ethics