Skip to main content

The Evolution of Chlorophylls and Photosynthesis

  • Chapter
Chlorophylls and Bacteriochlorophylls

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 25))

Abstract

Photosynthesis evolved very early on the Earth, but after respiration, and probably after the metabolic processes for methanogenesis and sulfur oxidation. This occurred in ancestors of anoxygenic photosynthetic bacteria. An ancestral reaction center of Photosystem I and II (RCI/II) type of photosynthesis arose in which a five membrane-spanning helix (MSH) protein bound two molecules of chlorophyll (Chl)/bacteriochlorophyll (BChl) in a special pair and had a Chl/quinone primary acceptor, and this protein fused, early on, with a six MSH antenna protein. Logic suggests that the earliest photopigments were protoporphyrin IX, followed by Mg protochlorophyllide a, followed by Chl/BChl. It is not clear whether Chl or BChl came first. The evolution of the modern RCI type occurred later but it is not clear under what selection pressure it arose, possibly when ferric salts and sulfur compounds became more available in the Proterozoic Eon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anbar AD and Knoll AH (2002) Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science 297:1137–1142

    PubMed  CAS  Google Scholar 

  • Baymann F, Brugna M, Mühlenhoff U and Nitschke W (2001) Daddy, where did (PS)I come from? Biochim Biophys Acta 1507:291–310

    PubMed  CAS  Google Scholar 

  • Beanland TJ (1990) Evolutionary relationship between ‘Q—type’ photosynthetic reaction centers: Hypothesis testing using parsimony. J Theoret Biol 145:535–545

    CAS  Google Scholar 

  • Bibby T, Mary I, Nield J and Barber J (2003) Lowlight-adapted Prochlorococcus species possess specific antennae for each photosystem. Nature 424:1051–1054

    PubMed  CAS  Google Scholar 

  • Bibby TS, Nield J, Partensky F and Barber J (2001) Oxyphotobacteria. Antenna ring around photosystem I. Nature 413:590

    PubMed  CAS  Google Scholar 

  • Bjerrum CJ and Canfield DE (2002) Ocean productivity before about 1.9 Gyrago limited by phosphorus adsorption onto iron oxides. Nature 417:159–162

    PubMed  CAS  Google Scholar 

  • Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynthesis Res 33, 91–111

    CAS  Google Scholar 

  • Blankenship RE (2002) Molecular Mechanisms of Photosynthesis. Blackwell Science Ltd, Oxford

    Google Scholar 

  • Blankenship RE and Hartman H (1998) The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci 23:94–97

    PubMed  CAS  Google Scholar 

  • Borowska Z and Mauzerall D (1987) Efficient near ultraviolet light-induced formation of hydrogen by ferrous hydroxide. Origin Life Evol Biosphere 17:251–259

    CAS  Google Scholar 

  • Borowska Z and Mauzerall D (1988) Photoreduction of carbon dioxide by aqueous ferrous ions: An alternative to the strongly reducing atmosphere for the chemical origin of life. Proc Natl Acad Sci USA 85:6577–6580

    PubMed  CAS  Google Scholar 

  • Brassier MD, Green OR, Jephcoat AP, Kleppe AK, van Kranen-donk MJ, Lindsay JF, Steele A and Grassineau NV (2002) Questioning the evidence for Earth's oldest fossils. Nature 416:76–81

    Google Scholar 

  • Brockman H Jr and Lipinski A (1983) Bacteriochlorophyll g. A new bacteriochlorophyll from Heliobacterium chlorum. Arch Mikrobiol 136:17–25

    Google Scholar 

  • Brocks JJ, Logan GA, Buick R and Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036

    PubMed  CAS  Google Scholar 

  • Burke DH, Hearst JE and Sidow A (1993) Early evolution of photosynthesis: Clues from nitrogenase and chlorophyll iron proteins. Proc Natl Acad Sci USA 90:7134–7138

    PubMed  CAS  Google Scholar 

  • Cady SS and Pinnavaia TJ (1978) Porphyrin intercalation in mica-type silicates. Inorg Chem 17:1501–1507

    CAS  Google Scholar 

  • Cairns-Smith AG (1978) Precambrian solution photochemistry, inverse segregation, and banded iron formations. Nature 276:807.

    CAS  Google Scholar 

  • Canfield DE and Raiswell, R (1999) The evolution of the sulfur cycle. Amer J Sci 299:697–723

    CAS  Google Scholar 

  • Castresana J (2001) Comparative genomics and bioenergetics. Biochim. Biophys Acta 1505:147–162

    Google Scholar 

  • Castresana J and Sarastre N (1995) Evolution of energetic metabolism: The respiration-early hypothesis. Trends Biochem Sci 20:443–448

    PubMed  CAS  Google Scholar 

  • Chen M, Bibby TS, Nield J, Larkum AWD and Barber J (2005a) Iron effect on formation and localization of antenna system binding with chlorophyll d. Biochim Biophys Acta 1708:367–374

    CAS  Google Scholar 

  • Chen M, Telfer A, Lin S, Pascal A, Larkum AWD and Blanken-ship RE (2005b) The nature of the Photosystem II reaction centre in the chlorophyll d containing prokaryote, Acaryochloris marina. Photochem Photobiol Sci 4:1060–1064

    CAS  Google Scholar 

  • Cogdell RJ, Isaacs NW, Howard TD, Mcluskey K, Fraser NJ and Prince SM (1999) How photosynthetic bacteria harvest solar energy. J Bacteriol 181:3869–3879

    PubMed  CAS  Google Scholar 

  • Copley SD (2000) Evolution of a metabolic pathway for degradation of a toxic xenobiotic: The patchwork approach. Trends Biochem Sci 25:261–266

    PubMed  CAS  Google Scholar 

  • Dismukes GC (1996) Manganese enzymes with binuclear active sites. Chem Rev 96:2909–2926

    PubMed  CAS  Google Scholar 

  • Dismukes GC and van Willigen RT (2005) Manganese: The oxygen-evolving complex and models. In: King R (ed) Encyclopedia of Inorganic Chemistry II. Wiley Interscience, in press

    Google Scholar 

  • Dismukes GC, Klimov VV, Varanov, SV, DasGupta J and Tyryshkin A (2001) The origin of atmospheric oxygen on Earth: The innovation of oxygenic photosynthesis. Proc Natl Acad Sci USA 98:2170–2175

    PubMed  CAS  Google Scholar 

  • Dolganov NA, Bhaya D and Grossman AR (1995) Cy anobacterial protein with similarity to the chlorophyll a/b binding-protein of higher plants — evolution and regulation. Proc Natl Acad Sci USA 92:636–640

    PubMed  CAS  Google Scholar 

  • Douglas SE, Raven JA and Larkum AWD (2003) The algae and their general characteristics. In: Larkum AWD, Douglas SE and Raven JA (eds) Photosynthesis in Algae, pp 1–10. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Dufresne A, Salanoubat M, Partensky F, Artiguenave F, Axmann I M, Barbe y Duprat S, Galperin MY, Koonin EV, Le Gall F, Makarova KS, Ostrowski M, Oztas S, Robert C, Rogozin IB, Scanlan DJ, Tandeaau de Marsac N. Weissenbach J, Wincker P, WolfY and Hess WR (2003) Genome sequence of cyano-bacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc Natl Acad Sci USA 100:10020–10025

    PubMed  CAS  Google Scholar 

  • Durnford, D (2003) Genes for Chl a/b and Chl a/c light harvesting proteins. In: Larkum AWD, Douglas Sand Raven JA (eds) Photosynthesis in Algae, pp 63–82, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Dutton PL (1986) Energy transduction in anoxygenic photosynthesis. In: Staehelin LA and Arntzen CJ (eds) Encyclopedia of Plant Physiology, Photosynthesis III, pp 197–232. Springer-Verlag, Berlin

    Google Scholar 

  • Eldredge N and Gould SJ (1972) Punctuated equilibria: An alternative to phyletic gradualism. In: Schopf TJM (ed) Models in Paleobiology, pp 82–115. Freeman, Cooper and Co., San Francisco

    Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    PubMed  CAS  Google Scholar 

  • Fyfe PK, Jones MR and Heathcote P (2002) Insights into the evolution of the antenna domains of Type-I and Type-II photo-synthetic reaction centers through homology modeling. FEBS Lett 530:117–123

    PubMed  CAS  Google Scholar 

  • Georgopapadakou NH and Scott AI (1977) On B12 biosynthesis and evolution. J Theor Biol 69:381–384

    PubMed  CAS  Google Scholar 

  • Golbeck JH (2003) The binding of cofactors to Photosystem I analyzed by spectroscopic and mutagenesis methods. Ann Rev Biophys Biomolec Struct 32:237–256

    CAS  Google Scholar 

  • Gogarten JP, Doolittle WF and Lawrence JC (2002) Prokaryotic evolution in the light of gene transfer. Mol Biol Evol 19:2226–2238

    PubMed  CAS  Google Scholar 

  • Gouy M and Li W-P (1989) Phylogenetic analysis based on rRNA sequence supports the archaebacterial rather than eocyte tree. Nature 339:145–147

    PubMed  CAS  Google Scholar 

  • Grabowski B, Cunningham FX, and Gantt E (2001) Chlorophyll and carotenoid binding in a simple red algal light-harvesting complex crosses phylogenetic lines. Proc Natl Acad Sci USA 98:2911–2916

    PubMed  CAS  Google Scholar 

  • Granick S (1957) Speculations on the origins and evolution of photosynthesis. Ann NY Acad Sci 69:292–301

    PubMed  CAS  Google Scholar 

  • Green BR (2003) The evolution of light-harvesting antennas. In: Green BR and Parson WF (eds) Light Harvesting Antennas in Photosynthesis, pp 129–168. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Green BR and Parson WF (eds) (2003) Light Harvesting Antennas in Photosynthesis. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gupta RS (2003) Evolutionary relationships among photosynthetic bacteria. Photosynth Res 76:173–183

    PubMed  CAS  Google Scholar 

  • Gupta RS, Mukhtar T and Singh B (1999) Evolutionary relationships among photosynthetic prokaryote (Heliobacterium chlorum, Chloroflexus aurantiacus, cyanobacteria, Chlorobium tepidum and proteobacteria): Implication regarding the origin of photosynthesis. Mol Microbiol 32:893–906

    PubMed  CAS  Google Scholar 

  • Heddad M and Adamska I (2000) Light stress-regulated two-helix proteins in Arabidopsis thaliana related to the chlorophyll a/b-binding gene family. Proc Natl Acad Sci USA 97:3741–3746

    PubMed  CAS  Google Scholar 

  • Helfrich M, Ross A, King GC, Turner AG and Larkum AWD (1999) Identification of [8-vinyl]-protochlorophyllide a in phototrophic prokaryotes and algae: Chemical and spectroscopic properties. Biochim Biophys Acta 1410:262–272

    PubMed  CAS  Google Scholar 

  • Hodgson GW and Baker GL (1964) Evidence for porphyrin in the Orgueil meteorite. Nature 202:125–127

    CAS  Google Scholar 

  • Hodgson GW and Baker GL (1967) Porphyrin abiogenesis from pyrrole and formaldehyde under simulated geochemical conditions. Nature 216:29–32

    PubMed  CAS  Google Scholar 

  • Hodgson GW and Ponnamperuma C (1968) Prebiotic porphyrin genesis: Porphyrins from electric discharge in methane, ammonia and water vapour. Proc Natl Acad Sci USA 31:153–158

    Google Scholar 

  • Hofmann E, Wrench PM, Sharpies FP, Hiller RG, Weite W and Diederichs K (1996) Structural basis of light-harvesting by Carotenoids: Peridinin-Chlorophyll-Protein from Amphidinium carterae. Science 272:1788–1791

    PubMed  CAS  Google Scholar 

  • Hoober JK and Eggink LL (2001) A potential role of chlorophylls b and c in assembly of light-harvesting complexes. FEBS Lett 489:1–3

    PubMed  CAS  Google Scholar 

  • House CH, Runnegar B and Fitz-Gibbon ST (2003) Geobiological analysis using whole genome-based tree building applied to the bacteria, Archaea, and Eukarya. Geobiology 1:15–26

    CAS  Google Scholar 

  • Houssier C and Sauer K (1970) Circular dichroism and magnetic circular dichroism of chlorophyll and protochlorophyllide pigments. J Am Chem Soc 92:779–790

    CAS  Google Scholar 

  • Hu Q, Miyashita H, Iwasaki I Kurano N, Miyachi S, Iwaki M and Itoh S (1998) A Photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Natl Acad Sci USA 95:13319–13323

    PubMed  CAS  Google Scholar 

  • Ilani A and Mauzerall D (1981) The potential span of photoredox reactions of porphyrins and chlorophyll at the lipid bilayer-water interface. Biophys J 35:79–92

    PubMed  CAS  Google Scholar 

  • Ilani A, Woodle M and Mauzerall D (1989) Photoinduced electron transfer across lipid bilayers containing magnesium octaethyl-porphyrin. Photochem Photobiol 29:673–679

    Google Scholar 

  • Jacobs JM and Jacobs NJ (1984) Protoporphyrinogen oxidation, an enzymatic step in heme and chlorophyll synthesis: Partial characterization of the reaction in plant organelles, and comparison with mammalian and bacterial systems. Arch Biochem Biophys:229:312–319

    PubMed  CAS  Google Scholar 

  • Jermiin LJ, Blankenship RE, Lockhart PJ and Larkum AWD (2001) Phylogenetic reconstruction of ancient photosynthetic lineages using chlorophyll and bacteriochlorophyll biosynthetic genes. In: PS2001: Proceedings 12th International Congress on Photosynthesis, S09-12. CSIRO Publishing, Melbourne (CD-ROM)

    Google Scholar 

  • Jones OTG (1963) The production of magnesium protoporphyrin monomethyl ester by Rhodopseudomonas spheroides. Biochem J 86:429–435

    PubMed  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O Saenger W and Krauss N. (2001) Three-dimensional structure of cyanobacterial Photosys-tem I at 2.5 Ã…ngstrom resolution. Nature 411:909–917

    PubMed  CAS  Google Scholar 

  • Kasting JF (2001) The rise of atmospheric oxygen. Science 293:819–820

    PubMed  CAS  Google Scholar 

  • Kasting JF and Siefert JL (2002) Life and the evolution of Earth's atmosphere. Science 296:1066–1068

    PubMed  CAS  Google Scholar 

  • Knoll AH (1999) Paleontology — A new molecular window on early life. Science 285:1025–1026

    PubMed  CAS  Google Scholar 

  • Kolber Z.S, Plumley FG, Lang AS, Beatty JT, Blankenship RE, Vandover CL, Vetriani C, Koblizek, M, Cathgeber C and Falkowski P (2001) Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495

    PubMed  CAS  Google Scholar 

  • Krasnovsky AA (1971) The evolution of photochemical electron transfer systems. In: Krimball AP and Oro J (eds) Prebiotic and Biochemical Evolution, pp 207–216. North Holland, Amsterdam

    Google Scholar 

  • Kühl M and Larkum AWD (2001) The microenvironment and photosynthetic performance of Prochloron sp. in symbiosis with didemnid ascidians. In: Seckbach J (ed) Symbiosis, pp 273–290. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Kühl M, Chen M, Ralph P, Schreiber U and Larkum AWD (2005) Niche and photosynthesis of chlorophyll d-containing cyano-bacteria. Nature 433:820

    PubMed  Google Scholar 

  • Kuhn KF (1998) In Quest of the Universe. Jones and Barlett, Boston

    Google Scholar 

  • La Roche J, van der Staay GWM, Ducret A, Aebersold R, Li R, Golden SS, Hiller RG, Wrench PM, Larkum AWD and Green BR. (1996) Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins. Proc Natl Acad Sci USA 93:15244–15248

    PubMed  Google Scholar 

  • Lake JA., Clarke MW, Henderson E, Fay SP, Oaks M, Schein-man A, Thornber JP and Mah RA (1985) Eubacteria, Halobac-teria, and the origin of photosynthesis: The photocytes. Proc Natl Acad Sci USA 82:3716–3720

    PubMed  CAS  Google Scholar 

  • Larkum AWD (1991) The evolution of chlorophylls. In: Scheer H (ed) Chlorophylls, pp 367–383. CRC Press, Boca Raton

    Google Scholar 

  • Larkum AWD (1992). Evolution of photosynthetic systems. In: Murata (ed) Research in Photosynthesis, Vol III, pp 475–482, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Larkum AWD (1999) The evolution of algae. In: Seckbach J (ed) Enigmatic Microorganisms and Life in Extreme Environments, pp 31–48. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Larkum AWD (2003) Light-harvesting systems in algae In: Larkum AWD, Douglas S and Raven JA (eds) Photosynthesis in Algae, pp 277–304. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Larkum AWD and Barrett J (1983) Light-harvesting systems in algae. Adv Bot Res 10:1–221

    CAS  Google Scholar 

  • Larkum AWD and Vesk M (2003) Algal plastids: Their fine structure and properties. In: Larkum AWD, Douglas S and Raven JA (eds) Photosynthesis in Algae, pp 11-28. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Larkum AWD, Scaramuzzi C, Cox GC, Killer RG and Turner AG (1994) Light-harvesting chlorophyll c-like pigment in Prochloron. Proc Natl Acad Sci USA 91:679–683

    PubMed  CAS  Google Scholar 

  • Lockhart P, Howe C J, Bryant DA, Beanland TJ and Larkum AWD (1992) Substitutional bias may preclude phylogenetic inference of chloroplast origins. J Mol Evol 34:153–162

    PubMed  CAS  Google Scholar 

  • Lockhart PJ, Larkum AWD, Steel MA, Wardell P and Penny D (1996a) Evolution of chlorophyll and bacteriochlorophyll: The problem of invariant sites in sequence analysis. Proc Natl Acad Sci USA 93:1930–1934

    CAS  Google Scholar 

  • Lockhart PJ, Steel MA and Larkum AWD (1996b) Gene Duplication and the evolution of photosynthetic reaction centers. FEBS Lett 385:193–196

    CAS  Google Scholar 

  • Margulis LM and Obar R (1985) Heliobacterium and the origin of chrysoplasts. BioSystems, 17:317–325

    PubMed  CAS  Google Scholar 

  • Mauzerall D (1960) The condensation of porphobilinogen to uroporphyrinogen. J Am Chem Soc 82:2605–2609

    CAS  Google Scholar 

  • Mauzerall D (1973) Why chlorophyll? Ann NY Acad Sci 206:483–494

    PubMed  CAS  Google Scholar 

  • Mauzerall D (1978) Porphyrins, chlorophyll and photosynthesis. In: Trebst AA and Avron M (eds) Encyclopedia of Plant Physiology, Vol V, PP 117–124. Springer, New York

    Google Scholar 

  • Mercer-Smith JA and Mauzerall DC (1984) Photochemistry of porphyrins: A model for the origin of photosynthesis. Photochem Photobiol 39:397–405

    PubMed  CAS  Google Scholar 

  • Mercer-Smith, JA, Raudino A and Mauzerall DC (1985) A model for the origin of photosynthesis. III The ultraviolet photochemistry of uroporphyrinogen. Photochem Photobiol 42:239–244

    PubMed  CAS  Google Scholar 

  • Michel H and Deisenhofer J (1988) Relevance of the photosynthetic reaction center from purple bacteria to the structure of Photosystem II. Biochemistry 27:1–7

    CAS  Google Scholar 

  • Mimuro M., Akimoto S, Yamazaki I, Miyashita H and Miyachi S (1999) Fluorescence properties of chlorophyll d-dominating alga, Acaryochloris marina: Studies using time-resolved fluorescence microscopy on whole cells. Biochim Biophys Acta 1412:37–46

    PubMed  CAS  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chilara M and Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383:402

    CAS  Google Scholar 

  • Mulkidjanian AY and Junge W (1997) On the origin of photo-synthesis as inferred from sequence analysis — a primordial UV-protector as common ancestor of reaction centers and antenna proteins. Photosynth Res 51:27–42

    CAS  Google Scholar 

  • Olson JM (1970) The evolution of photosynthesis. Science 168:438–446

    PubMed  CAS  Google Scholar 

  • Olson JM (1999) Early evolution of chlorophyll-based photosynthesis. Chemtracts 12:468–482

    CAS  Google Scholar 

  • Olson JM (2000) ‘Evolution of photosynthesis’ (1970). Re-examined thirty years later. Photosynth Res 68:95–117

    Google Scholar 

  • Olson JM and Pierson BK (1987) Evolution of reaction centers in photosynthetic prokaryotes. Int Rev Cytol 108:209–248

    PubMed  CAS  Google Scholar 

  • Ort DR (1986) Energy transduction in oxygenic photosynthesis: An overview of structure and mechanism. In: Staehelin LA and Arntzen CJ (eds) Encyclopedia of Plant Physiology, Photosynthesis III, pp 143–196. Springer, Berlin

    Google Scholar 

  • Oesterhelt D, Tittor J (1989) Two pumps, one principle: Light-driven ion transport in halobacteria. Trends Biochem Sci 14:57–61

    PubMed  CAS  Google Scholar 

  • Ovchinnikof YA, Abdulaev NG, Zolotarev AS, Shmukler BE, Zargarov AA, Kutuzov MA, Telezhinskaya TN and Levina NB (1988a) Photosynthetic reaction centre of Chloroflexus aurantiacus. 1. Primary structure of the L-subunit. FEBS Lett 231:237–242

    Google Scholar 

  • Ovchinnikof YA, Abdulaev NG, Shmukler BE, Zargarov AA, Kutuzov MA, Telezhinskaya TN, Levina NB and Zolotarev AS (1988b) Photosynthetic reaction centre of Chloroflexus aurantiacus. Primary structure of the M-subunit. FEBS Lett 232; 364–368

    Google Scholar 

  • Owen TC and Bar-Nun A (2001 ) Contributions of icy planetisimals to the Earth's early atmosphere. Origins Life Evol Biosphere 31:435–458

    CAS  Google Scholar 

  • Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, Lamerdin J, Regala W, Allen EE, McCarren J, Paulsen I, Dufresne A, Partensky F, Webb EA and Waterbury J (2003) The genome of a motile marine Synechococcus. Nature 424:1037–1042

    PubMed  CAS  Google Scholar 

  • Partensky F and Garczarek L (2003) The photosynthetic apparatus of Chlorophyll b- and d-containing oxyphotobacteria. In: Larkum AWD, Douglas S and Raven JA (eds) Photosynthesis in Algae, pp 29–62. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Pavlov AA, Hurtgen MT, Kasting JF and Arthur MA (2003) Methane-rich Proterozoic atmosphere? Geology 31:87–90

    CAS  Google Scholar 

  • Rappé MS and Giovannoni SJ (2003) The unknown microbial majority. Ann Rev Microbiol 57:369–394

    Google Scholar 

  • Raven JA (1996) The bigger the fewer: Size, taxonomic diversity and the range of chlorophyll(ide) pigments in oxygen-evolving marine photolithotrophs. J Mar Biol Ass UK 76:211–217

    Google Scholar 

  • Raven JA and Beardall J (2003) Carbon acquisition mechanisms of algae: Carbon dioxide diffusion and carbon dioxide concentrating mechanisms. In: Larkum AWD, Douglas S and Raven JA (eds) Photosynthesis in Algae, pp 225–244. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Raymond J and Blankenship RE (2004) Biosynthetic pathways, gene replacement and the antiquity of life. Geobiology 2:199–203

    CAS  Google Scholar 

  • Raymond J, Zhaxybayeva O, Gogarten JP, Gerdes SV and Blankenship RE (2002) Whole-genome analysis of photosynthetic prokaryotes. Science 298:1616–1620

    PubMed  CAS  Google Scholar 

  • Rivera MC and Lake J (2004) The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431:152–155

    PubMed  CAS  Google Scholar 

  • Rocap G, Larimer FW, Lamerdin J, Mafattl S, Chain P, Ahigren NA, Areliano A, Coleman M, Hauser L, Hess WR, Johnson ZI, Land M, Lindell D, Post AF, Regala W, Shah M, Shaw SL, Steglich C, Sullivan MB, Ting CS, Tolonen A, Webb EA, Zinser ER and Chisholm SW (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424:1042–1047

    PubMed  CAS  Google Scholar 

  • Runquist JA and Loach PA (1981) Catalysis of electron transfer across phospholipid bilayers by iron-porphyrin complexes. Biochim Biophys Acta 637:231–244

    PubMed  CAS  Google Scholar 

  • Rye R, Kuo PH and Holland HD (1995) Atmospheric carbon dioxide concentration before 2.2 billion years ago. Nature 378:603–605

    PubMed  CAS  Google Scholar 

  • Schopf JW (1993) Microfossils of the early archean apex chert: New evidence on the antiquity of life. Science 260:640–646

    PubMed  CAS  Google Scholar 

  • Shen Y, Knoll AH and Walter MR 2003 Evidence for low sulphate and anoxia in a mid-Proterozoic marine basins. Nature 423:632–635

    PubMed  CAS  Google Scholar 

  • Shiozawa JA, Lottspeich F, Osterhelt D and Feick R (1989) The primary structure of Chloroflexus aurantiacus reaction center polypeptides. Eur J Biochem 180:75–84

    PubMed  CAS  Google Scholar 

  • Simionescu CI, Simionescu BC, Mora R and Leanca M (1978) Porphyrin-like compounds genesis under simulated geochemical conditions. Origins Life Evol Biosphere 9:103–114

    CAS  Google Scholar 

  • Smith KM (1975) Appendix: Atomic absorption spectra. In: Smith KM (ed) Porphyrins and Metalloporphyrins, p 871. Eisevier, Amsterdam

    Google Scholar 

  • Smith JHC and Benitez A (1955) Chlorophyll analysis in plant materials. In: Paech K and Travey MV (eds) Modern Methods of Plant Analysis, Vol 4, pp 142–165. Springer, Berlin

    Google Scholar 

  • Stemler AJ (2002) The bicarbonate effect, oxygen evolution, and the shadow of Otto Warburg. Photosynth Res 73:177–183

    PubMed  CAS  Google Scholar 

  • Summons RE, Jahnke LL, Hope JM and Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–557

    PubMed  CAS  Google Scholar 

  • Szutka A (1965) Probable synthesis of porphine-like substances during chemical evolution. In: Fox SW (ed) Origin of Prebio-logical Systems and Their Molecular Matrices, p 245. Academic Press, New York

    Google Scholar 

  • Ting CS, Rocap G, King J and Chisholm SW (2002) Cyanobacterial photosynthesis in the oceans: The origin and significance of divergent light-harvesting strategies. Trends Microbiol 10:134–142

    PubMed  CAS  Google Scholar 

  • Tomitani A, Okada K, Miyashita H, Matthijs HCP, Ohno T and Tanaka A (1999) Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature 400:159–162

    PubMed  CAS  Google Scholar 

  • Treibs A (1973) On the chromophores of porphyrin systems. Ann NY Acad Sci 206:97–115

    PubMed  CAS  Google Scholar 

  • Van Gorkom HJ (1987) Evolution of photosynthesis. In: Amesz J (ed) Photosynthesis, pp 343–350. Elsevier, Amsterdam

    Google Scholar 

  • Vermaas WFJ (1994) Evolution of heliobacteria: Implications for photosynthetic reaction center complexes. Photosynth Res 41:285–294

    PubMed  CAS  Google Scholar 

  • Walker JGC, Klein C., Schidlowski M, Schopf JW, Stevenson DJ and Walker MR (1983) Environmental evolution of the Archean-early Proterozoic Earth. In: Schopf JW (ed) Earth's Earliest Biosphere, pp 260–290. Princeton University Press, Princeton

    Google Scholar 

  • Woese CR (1987) Bacterial Evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

  • Woese CR (2002) On the evolution of cells. Proc Natl Acad Sci USA 99:8742–8747

    PubMed  CAS  Google Scholar 

  • Wolfe GR, Cunningham FX, Durnford D, Green BR and Gantt E (1994) Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation. Nature 367:566–568

    CAS  Google Scholar 

  • Woodle M, Zhang JW and Mauzerall D (1987) Kinetics of charge transfer at the lipid bilayer-water interface on the nanosecond time scale. Biophys J 52:577– 586

    PubMed  CAS  Google Scholar 

  • Xiong J and Bauer CE (2002) Complex evolution of photosynthesis. Annu Rev Plant Biol 53:503–521

    PubMed  CAS  Google Scholar 

  • Xiong J, Fischer M, Inoue K, Nakahara M and Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289:1724–1729

    PubMed  CAS  Google Scholar 

  • Zhang Y, Jermiin L and Larkum AWD (2004) Phylogenetic analysis of light-harvesting antenna peptides from plants and bacteria. In: van der Est A and Bruce D (eds) Photosynthesis: Fundamental Aspects and Global Perspectives. Proc. 13th International Congress on Photosynthesis, Montréal, p. 745. International Society of Photosynthesis Research

    Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W and Orth P (2001) Crystal structure of Photosystem II from Synechococcus elongatus at 3.8 Ã…ngstrom resolution. Nature 409:739–743

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Larkum, A.W. (2006). The Evolution of Chlorophylls and Photosynthesis. In: Grimm, B., Porra, R.J., Rüdiger, W., Scheer, H. (eds) Chlorophylls and Bacteriochlorophylls. Advances in Photosynthesis and Respiration, vol 25. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4516-6_18

Download citation

Publish with us

Policies and ethics