Skip to main content

Transfer RNA-Dependent Aminolevulinic Acid Formation: Structure and Function Of Glutamyl-tRNA Synthetase, Reductase and Glutamate-1-Semialdehyde-2,1-Aminomutase

  • Chapter
Chlorophylls and Bacteriochlorophylls

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 25))

Abstract

In plants, green algae, archaea and in most bacteria the common precursor of all tetrapyrroles, 5-aminolevulinic acid, is formed by three enzymes. The initial substrate glutamate is converted to glutamyl-tRNA by glutamyltRNA synthetase for use in both protein and tetrapyrrole biosynthesis. During the first committed step an NADPH-dependent glutamyl-tRNA reductase reduces glutamyl-tRNA to form glutamate-1-semialdehyde, which is subsequently transaminated by glutamate-1-semialdehyde-2,1-aminomutase to yield 5-aminolevulinic acid. The enzymatic mechanisms deduced from biochemical investigations and recently solved crystal structures are described for all three enzymes. A potential pathway for metabolic channeling of the reactive aldehyde between glutamyl-tRNA reductase and the aminomutase is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beale SI and Castelfranco PA (1973) 14C incorporation from exogenous compounds into δ-aminolevulinic acid by greening cucumber cotyledons. Biochem Biophys Res Commun 52: 143–149

    Article  PubMed  CAS  Google Scholar 

  • Breton R, Sanfacon H, Papayannopoulos I, Biemann K and Lapointe J (1986) Glutamyl-tRNA synthetase of Escherichia Coli. Isolation and primary structure of the gltX gene and homology with other aminoacyl-tRNA synthetases. J Biol Chem 261: 10610–10617

    PubMed  CAS  Google Scholar 

  • Brody S, Andersen JS, Kannangara CG, Meldgaard M, Roepstorff P and von Wettstein D (1995) Characterization of the different spectral forms of glutamate 1-semialdehyde aminotransferase by mass spectrometry. Biochemistry 34: 15918–15924

    Article  PubMed  CAS  Google Scholar 

  • Carugo O and Argos P (1997) NADP-dependent enzymes. I: Conserved stereochemistry of cofactor binding. Proteins Struct Genet 28: 10–28

    Article  CAS  Google Scholar 

  • Choi P, Wang L, Archer CD and Elliott T (1996) Transcription of the glutamyl-tRNA reductase (hemA) gene in Salmonella typhimurium and Escherichia coli: Role of the hemA P1 promoter and the arcA gene product. J Bacteriol 178: 638–646

    PubMed  CAS  Google Scholar 

  • Contestabile R, Angelaccio S, Maytum R, Bossa F and John RA (2000) The contribution of a conformationally mobile, active site loop to the reaction catalyzed by glutamate semialdehyde aminomutase. J Biol Chem 275: 3879–3886

    Article  PubMed  CAS  Google Scholar 

  • Curnow AW, Hong K, Yuan R, Kim S, Martins O, Winkler W, Henkin TM and Söll D (1997) Glu-tRNAGln amidotransferase: A novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proc Natl Acad Sci USA 94: 11819–11826

    Article  PubMed  CAS  Google Scholar 

  • Cusack S, Berthet-Colominas C, Hartlein M, Nassar N and Leberman R (1990) A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 Å. Nature 347: 249–255

    Article  PubMed  CAS  Google Scholar 

  • Darie S and Gunsalus RP (1994) Effect of heme and oxygen availability on hemA gene expression in Escherichia coli: Role of the fnr, arcA, and hemA gene products. J Bacteriol 176: 5270–5276

    PubMed  CAS  Google Scholar 

  • Eiler S, Dock-Bregeon A, Moulinier L, Thierry JC and Moras D (1999) Synthesis of aspartyl-tRNA(Asp) in Escherichia coli— a snapshot of the second step. EMBO J 18: 6532–6541

    Article  PubMed  CAS  Google Scholar 

  • Eriani G, Delarue M, Poch O, Gangloff J and Moras D (1990) Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347: 203–206

    Article  PubMed  CAS  Google Scholar 

  • Ferreira GC and Gong J (1995) 5-Aminolevulinate synthase and the first step of heme biosynthesis. J Bioenerg Biomembr 27: 151–159

    Article  PubMed  CAS  Google Scholar 

  • Freist W, Gauss DH, Söll D and Lapointe J (1997) Glutamyl-tRNA synthetase. Biol Chem 378: 1313–1329

    PubMed  CAS  Google Scholar 

  • Friedmann HC, Duban ME, Valasinas A and Frydman B (1992) The enantioselective participation of (S)- and (R)-diaminovaleric acids in the formation of delta-aminolevulinic acid in cyanobacteria. Biochem Biophys Res Commun 185: 60–68

    Article  PubMed  CAS  Google Scholar 

  • Gendron N, Breton R, Champagne N and Lapointe J (1992) Adenylosuccinate lyase of Bacillus subtilis regulates the activity of the glutamyl-tRNA synthetase Proc Natl Acad Sci U S A 89: 5389–5392

    Article  PubMed  CAS  Google Scholar 

  • Gibson KD, Laver WG and Neuberger A (1958) Initial stages in the biosynthesis of porphyrins. The formation of δ-aminolevulinic acid from glycine and succinyl-coenzyme A by particles from chicken erythrocytes. Biochem J 70: 71–81

    PubMed  CAS  Google Scholar 

  • Grimm B, Smith MA and von Wettstein D (1992) The role of Lys272 in the pyridoxal 5-phosphate active site of Synechococcus glutamate-1-semialdehyde aminotransferase. Eur J Biochem 206: 579–585

    Article  PubMed  CAS  Google Scholar 

  • Hennig M, Grimm B, Contestabile R, John RA and Jansonius JN (1997) Crystal structure of glutamate-1-semialdehyde aminomutase: An á2-dimeric vitamin B6-dependent enzyme with asymmetry in structure and active site reactivity. Proc Natl Acad Sci USA 94: 4866–4871

    Article  PubMed  CAS  Google Scholar 

  • Hill CM, Pearson SA, Smith AJ, and Rogers LJ (1985) Inhibition of chlorophyll synthesis in Hordeum vulgare by 3-amino 2,3- dihydrobenzoic acid (gabaculin). Biosci Rep 5: 775–781

    Article  PubMed  CAS  Google Scholar 

  • Hoober JK, Kahn A, Ash DE, Gough S and Kannangara CG (1988) Biosynthesis of delta-aminolevulinate in greening barley leaves. IX. Structure of the substrate, mode of gabaculine inhibition, and the catalytic mechanism of glutamate 1-semialdehyde aminotransferase. Carlsberg Res Commun 53: 11–25

    PubMed  CAS  Google Scholar 

  • Huang DD, Wang WY, Gough SP and Kannangara CG (1984) delta-Aminolevulinic acid-synthesizing enzymes need an RNA moiety for activity. Science 225: 1482–1484

    Article  PubMed  CAS  Google Scholar 

  • Hungerer C, Troup B, Romling U and Jahn D (1995) Regulation of the hemA gene during 5-aminolevulinic acid formation in Pseudomonas aeruginosa. J Bacteriol 177: 1435–1443

    PubMed  CAS  Google Scholar 

  • Ilag LL and Jahn D (1992) Activity and spectroscopic properties of the Escherichia coli glutamate 1-semialdehyde aminotransferase and the putative active site mutant K265R. Biochemistry 31: 7143–7151

    Article  PubMed  CAS  Google Scholar 

  • Jahn D, Kim YC, Ishino Y, Chen MW and Söll D (1990) Purification and functional characterization of the Glu-tRNAGln amidotransferase from Chlamydomonas reinhardtii. J Biol Chem 265: 8059–8064

    PubMed  CAS  Google Scholar 

  • Jahn D, Chen MW and Söll D (1991) Two glutamyl-tRNA reductase activities in Escherichia coli. J Biol Chem 266: 161–167

    PubMed  CAS  Google Scholar 

  • Jahn D, Verkamp E and Söll D (1992) Glutamyl-transfer RNA: A precursor of heme and chlorophyll biosynthesis. Trends Biochem Sci 17: 215–218

    Article  PubMed  CAS  Google Scholar 

  • Kannangara CG, Gough SP, Oliver RP and Rasmussen SK (1984) Biosynthesis of δ-aminolevulinate in greening barley leaves. VI. Activation of glutamate by ligation to RNA. Carlsberg Res Commun 49: 417–437

    CAS  Google Scholar 

  • Kikuchi G, Kumar A, Talmage P and Shemin D (1958) The enzymatic synthesis of δ-aminolevulinic acid. J Biol Chem 233: 1214–1219

    PubMed  CAS  Google Scholar 

  • Kraulis PJ (1991) MOLSCRIPT: A program to produce both detailed and schematic plots or protein structures. J Appl Crystallogr 24: 964–950

    Article  Google Scholar 

  • Krieger R, Rompf A, Schobert M and Jahn D (2002) The Pseudomonas aeruginosa hemA promoter is regulated by Anr, Dnr, NarL and Integration Host Factor. Mol Gen Genomics 267: 409–417

    Article  CAS  Google Scholar 

  • Kruger MK and Sorensen MA (1998) Aminoacylation of hypomodified tRNAGlu in vivo. J Mol Biol 284: 609–620

    Article  PubMed  CAS  Google Scholar 

  • Lapointe J and Söll D (1972) Glutamyl transfer ribonucleic acid synthetase of Escherichia coli. 3. Influence of the 46K protein on the affinity of the 56K glutamyl transfer ribonucleic acid synthetase for its substrates. J Biol Chem 247: 4982–4985

    PubMed  CAS  Google Scholar 

  • Liu J, Lin SX, Blochet JE, Pezolet M and Lapointe J (1993) The glutamyl-tRNA synthetase of Escherichia coli contains one atom of zinc essential for its native conformation and its catalytic activity. Biochemistry 32: 11390–11396

    Article  PubMed  CAS  Google Scholar 

  • Loida PJ, Thompson RL, Walker DM and CaJacob CA (1999) Novel inhibitors of glutamyl-tRNAGlu reductase identified through cell-based screening of the heme/chlorophyll biosynthetic pathway. Arch Biochem Biophys 372: 230–237

    Article  PubMed  CAS  Google Scholar 

  • Madore E, Florentz C, Giege R, Sekine S, Yokoyama S and Lapointe J (1999) Effect of modified nucleotides on Escherichia Coli tRNAGlu structure and on its aminoacylation by glutamyl-tRNA synthetase. Predominant and distinct roles of the mnm5 and s2 modifications of U34. Eur J Biochem 266: 1128–1135

    Article  PubMed  CAS  Google Scholar 

  • McNicholas PM, Javor G, Darie S and Gunsalus RP (1997) Expression of the heme biosynthetic pathway genes hemCD, hemH, hemM, and hemA of Escherichia coli. FEMS Microbiol Lett 146: 143–148

    Article  PubMed  CAS  Google Scholar 

  • Mehta PK and Christen P (1994) Homology of 1-aminocyclopropane- 1-carboxylate synthase, 8-amino-7-oxononanoate synthase, 2-amino-6-caprolactam racemase, 2,2-dialkylglycine decarboxylase, glutamate-1-semialdehyde 2,1-aminomutase and isopenicillin-N-epimerase with aminotransferases. Biochem Biophys Res Commun 198: 138–143

    Article  PubMed  CAS  Google Scholar 

  • Merritt EA and Murphy EP (1994) Raster3D: Photorealistic molecular graphics. Methods Enzymol 277: 505–524

    Article  Google Scholar 

  • Moser J, Lorenz S, Hubschwerlen C, Rompf A and Jahn D (1999) Methanopyrus kandleri glutamyl-tRNA reductase. J Biol Chem 274: 30679–30685

    Article  PubMed  CAS  Google Scholar 

  • Moser J, Schubert W-D, Beier V, Jahn D and Heinz DW (2001) V-shaped structure of glutamyl-tRNA reductase, the first enzyme of tRNA-dependent tetrapyrrole biosynthesis EMBO J 20: 6583–6590

    Article  PubMed  CAS  Google Scholar 

  • Nicholls A, Sharp K and Honig B (1991) Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11: 281–296

    Article  PubMed  CAS  Google Scholar 

  • Nureki O, Vassylyev DG, Katayanagi K, Shimizu T, Sekine S, Kigawa T, Miyazawa T, Yokoyama S and Morikawa K (1995) Architectures of class-defining and specific domains of glutamyl- tRNA synthetase. Science 267: 1958–1965

    Article  PubMed  CAS  Google Scholar 

  • O'Neill GP and Söll D (1990) Expression of the Synechocystis sp. strain PCC 6803 tRNAGlu gene provides tRNA for protein and chlorophyll biosynthesis. J Bacteriol 172: 6363–6371

    PubMed  Google Scholar 

  • Pedersen S, Bloch PL, Reeh S and Neidhardt FC (1978) Patterns of protein synthesis in E. coli: A catalog of the amount of 140 individual proteins at different growth rates. Cell 14: 179–190

    Article  PubMed  CAS  Google Scholar 

  • Proulx M, Duplain L, Lacoste L, Yaguchi M and Lapointe J (1983) The monomeric glutamyl-tRNA synthetase from Bacillus subtilis 168 and its regulatory factor. Their purification, characterization, and the study of their interaction J Biol Chem 258: 753–759

    PubMed  CAS  Google Scholar 

  • Pugh CE, Harwood JL and John RA (1992) Mechanism of glutamate semialdehyde aminotransferase. Roles of diamino- and dioxo-intermediates in the synthesis of aminolevulinate. J Biol Chem 267: 1584–1588

    PubMed  CAS  Google Scholar 

  • Ratinaud MH, Thomes JC and Julien R (1983) Glutamyl-tRNA synthetases from wheat. Isolation and characterization of three dimeric enzymes. Eur J Biochem 135: 471–477

    Article  PubMed  CAS  Google Scholar 

  • Schauer S, Chaturvedi S, Randau L, Moser J, Kitabatake M, Lorenz S, Verkamp E, Schubert WD, Nakayashiki T, Murai M, Wall K, Thomann HU, Heinz DW, Inokuchi H, Söll D and Jahn D (2002) Escherichia coli glutamyl-tRNA reductase: Trapping of the thioester intermediate J Biol Chem 277: 48657–48663

    Article  PubMed  CAS  Google Scholar 

  • Schobert M and Jahn D (2002) Regulation of heme biosynthesis in non-phototrophic bacteria. J Mol Microbiol Biotechnol 4: 287–294

    PubMed  CAS  Google Scholar 

  • Schön A, Krupp G, Gough S, Berry-Lowe S, Kannangara CG and Söll D (1986) The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature 322: 281–284

    Article  PubMed  Google Scholar 

  • Schön A, Hottinger H and Söll D (1988) Misaminoacylation and transamidation are required for protein biosynthesis in Lactobacillus bulgaricus. Biochimie 70: 391–394

    Article  PubMed  Google Scholar 

  • Sekine S, Nureki O, Sakamoto K, Niimi T, Tateno M, Go M, Kohno T, Brisson A, Lapointe J and Yokoyama S (1996) Major identity determinants in the ‘augmented D helix’ of tRNAGlu from Escherichia coli. J Mol Biol 256: 685–700

    Article  PubMed  CAS  Google Scholar 

  • Sekine S, Nureki O, Tateno M and Yokoyama S (1999) The identity determinants required for the discrimination between tRNAGlu and tRNAAsp by glutamyl-tRNA synthetase from Escherichia coli. Eur J Biochem 261: 354–360

    Article  PubMed  CAS  Google Scholar 

  • Sekine S, Nureki O, Shimada A, Vassylyev DG and Yokoyama S (2001a) Major identity determinants in the ‘augmented D helix’ of tRNAGlu from Escherichia coli. Nat Struct Biol 8: 189–191

    Article  CAS  Google Scholar 

  • Sekine S, Nureki O, Shimada A, Vassylyev DG and Yokoyama S (2001b) Structural basis for anticodon recognition by discriminating glutamyl-tRNA synthetase. Nat Struct Biol 8: 203–206

    Article  CAS  Google Scholar 

  • Shemin D and Russell CS (1953) 5-Aminolevulinic acid, its role in the biosynthesis of porphyrins and purines. J Am Chem Soc 75: 4873–4875

    Article  CAS  Google Scholar 

  • Smith MA and Grimm B (1992) Gabaculine resistance of Synechococcus glutamate 1-semialdehyde aminotransferase. Biochemistry 31: 4122–4127

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Grimm B, Kannangara CG and von Wettstein D (1991a) Spectral kinetics of glutamate-1-semialdehyde amino mutase of Synechococcus. Proc Natl Acad Sci USA 88: 9775–9779

    Article  CAS  Google Scholar 

  • Smith MA, Kannangara CG, Grimm B and von Wettstein D (1991b) Characterization of glutamate-1-semialdehyde aminotransferase of Synechococcus. Steady-state kinetic analysis. Eur J Biochem 202: 749–757

    Article  CAS  Google Scholar 

  • Smith MA, Kannangara CG and Grimm B (1992) Glutamate 1-semialdehyde aminotransferase: Anomalous enantiomeric reaction and enzyme mechanism. Biochemistry 31: 11249–11254

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, King PJ and Grimm B (1998) Transient-state kinetic analysis of Synechococcus glutamate 1-semialdehyde aminotransferase Biochemistry 37: 319–329

    Article  PubMed  CAS  Google Scholar 

  • Stange-Thomann N, Thomann HU, Lloyd AJ, Lyman H and Söll D (1994) A point mutation in Euglena gracilis chloroplast tRNAGlu uncouples protein and chlorophyll biosynthesis. Proc Natl Acad Sci USA 91: 7947–7951

    Article  PubMed  CAS  Google Scholar 

  • Sylvers LA, Rogers KC, Shimizu M, Ohtsuka E and Söll D (1993) A 2-thiouridine derivative in tRNAGlu is a positive determinant for aminoacylation by Escherichia coli glutamyl-tRNA synthetase. Biochemistry 32: 3836–3841

    Article  PubMed  CAS  Google Scholar 

  • Tumbula DL, Becker HD, Chang WZ and Söll D (2000) Domainspecific recruitment of amide amino acids for protein synthesis. Nature 407: 106–110

    Article  PubMed  CAS  Google Scholar 

  • Tyacke RJ, Contestabile R, Grimm B, Harwood JL and John RA (1995) Reactions of glutamate semialdehyde aminotransferase (glutamate-1-semialdehyde 2,1 aminomutase) with vinyl and acetylenic substrate analogues analysed by rapid scanning spectrophotometry. Biochem J 309: 307–313

    PubMed  CAS  Google Scholar 

  • Verderber E, Lucast LJ, Van Dehy JA, Cozart P, Etter JB and Best EA (1997) Role of the hemA gene product and deltaaminolevulinic acid in regulation of Escherichia coli heme synthesis. J Bacteriol 179: 4583–4590

    PubMed  CAS  Google Scholar 

  • Vothknecht UC, Kannangara CG and von Wettstein D (1996) Expression of catalytically active barley glutamyl tRNAGlu reductase in Escherichia coli as a fusion protein with glutathione S-transferase. Proc Natl Acad Sci USA 93: 9287–9291

    Article  PubMed  CAS  Google Scholar 

  • Wang LY, Brown L, Elliott M and Elliott T (1997) Regulation of heme biosynthesis in Salmonella typhimurium: activity of glutamyl-tRNA reductase (HemA) is greatly elevated during heme limitation by a mechanism which increases abundance of the protein. J Bacteriol 179: 2907–2914

    PubMed  CAS  Google Scholar 

  • Wang LY, Elliott M and Elliott T (1999a) Conditional stability of the HemA protein (glutamyl-tRNA reductase) regulates heme biosynthesis in Salmonella typhimurium. J Bacteriol 181: 1211–1219

    CAS  Google Scholar 

  • Wang LY, Wilson S and Elliott T (1999b) A mutant HemA protein with positive charge close to the N terminus is stabilized against heme-regulated proteolysis in Salmonella typhimurium. J Bacteriol 181: 6033–6041

    CAS  Google Scholar 

  • Weinstein JD and Beale SI (1985) RNA is required for enzymatic conversion of glutamate to delta-aminolevulinate by extracts of Chlorella vulgaris. Arch Biochem Biophys 239: 87–93

    Article  PubMed  CAS  Google Scholar 

  • Willows RD, Kannangara CG and Pontoppidan B (1995) Nucleotides of tRNAGlu involved in recognition by barley chloroplast glutamyl-tRNA synthetase and glutamyl-tRNA reductase. Biochim Biophys Acta 1263: 228–234

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Jahn, D., Moser, J., Schubert, WD., Heinz, D.W. (2006). Transfer RNA-Dependent Aminolevulinic Acid Formation: Structure and Function Of Glutamyl-tRNA Synthetase, Reductase and Glutamate-1-Semialdehyde-2,1-Aminomutase. In: Grimm, B., Porra, R.J., Rüdiger, W., Scheer, H. (eds) Chlorophylls and Bacteriochlorophylls. Advances in Photosynthesis and Respiration, vol 25. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4516-6_12

Download citation

Publish with us

Policies and ethics