Skip to main content

Cerebral Monitoring in the Operating Room and the Intensive Care Unit: An Introductory for the Clinician and a Guide for the Novice Wanting to Open a Window to the Brain

  • Chapter
Cerebral Monitoring in the OR and ICU

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blacher RS. On awakening paralyzed during anesthesia, a syndrome of traumatic neurosis. JAMA 1975; 234: 67–68.

    Article  PubMed  CAS  Google Scholar 

  2. Hilgenberg JC. Intraoperative awareness during high dose fentanyl-oxygen anesthesia. Anesthesiology 1981; 54: 341–343.

    PubMed  CAS  Google Scholar 

  3. Greenberg RP, Pauline PD, Newlon G, et al. Prognostic implications of early multimodality evoked potentials in severely head-injured patients. J Neurosurg 1981; 55: 227–236.

    PubMed  CAS  Google Scholar 

  4. Greenberg RP, Griffith RL. Neurophysiologic evaluation and monitoring of brain function. In: Cottrell RL, Turndorf H, eds. Anesthesia and Neursurgery. St. Louis: Mosby, 1980: 401–420.

    Google Scholar 

  5. Levy WJ, Grundy BL, Smith NT. Monitoring the electroencephalogram and evoked potentials during anesthesia. In: Saidman LJ, Smith NT, eds. Monitoring in Anesthesia, 2nd ed. Boston, London, Sydney, Wellington, Durban, Toronto: Butterworth, 1978: 227–267.

    Google Scholar 

  6. Grundy B, Heros R, Tung AS, Doyles E. Intraoperative hypoxia detected by evoked potential monitoring. Anesth Analg 1981; 60: 437–439.

    PubMed  CAS  Google Scholar 

  7. Levy WJ, Grundy BL, Smith NT. Electroencephalography and evoked potentials. In: Saidmann LJ, Smith NT, eds. Monitoring in Anesthesia and Intensive Care. London: Butterworth, 1984: 28–59.

    Google Scholar 

  8. Prior PF. EEG monitoring and evoked potentials. Br J Anaesth 1985; 57: 63–81.

    PubMed  CAS  Google Scholar 

  9. Prior PF. Monitoring Cerebral Function Long-Term Recordings of Cerebral Electrical Activity. Amsterdam: North Holland Biomedical Press, 1979.

    Google Scholar 

  10. Brechmert VL. Current status of electroencephalography in the practice of clinical anesthesia. Clin Anesth 1964: 2: 8.

    Google Scholar 

  11. Fisch BJ. Spehlmanns EEG Primer. Amsterdam, New York, Oxford: Elsevier, 1993.

    Google Scholar 

  12. Cooley JW, Turkey JW. An algorithm for the machine calculation of complex Fourier series. Mathemat Comput 1965; 26: 429.

    Google Scholar 

  13. Findeiss JC, Kien JA, Huse KOW, Linde HW. Power specral density of the electroencephalogram during halothane and cyclopropane anesthesia in man. Anesth Analg 1969; 48: 108.

    Google Scholar 

  14. Sebel PS, Heneghan CP, Ingram DA. Evoked responses-a neurological indicator of depth of anaesthesia? Br J Anaesth 1985; 57: 841–842.

    PubMed  CAS  Google Scholar 

  15. Ingram GS, Payne JP, Perry IR. Computerized frequency analysis of the EEG during induction of anaesthesia. Br J Anaesth 1976; 48: 275.

    PubMed  CAS  Google Scholar 

  16. Prior S, Faulcconer AJ, Bickford RG, Hunter RC. Electroencephalographic pattern during anesthesia with cyclopropane-correlation concentrations in arterial blood. Anesth Analg 1953; 32: 130.

    Google Scholar 

  17. Levy WJ. Intraoperative EEG patterns: Implications for EEG monitoring. Anesthesiology 1984; 60: 430–434.

    PubMed  CAS  Google Scholar 

  18. Creutzfeld O, Lux HD, Watanabe S. Electrophysiology of cortical cells. In: Pipura DP, Yahr MD, eds. The Thalamus. New York: Columbia University Press, 1966: 209–230.

    Google Scholar 

  19. Andersen P, Eccles JC, Sears TA. The ventro-basal complex of the thalamus: Types of cells, their response and their functional organisation. J Physiol 1976; 174: 370–399.

    Google Scholar 

  20. Andersen P, Anderrsson SA, Lamo T. Some factors involved in the thalamic control of spontaneous barbiturate spindles. J Physiol (London) 1976; 197: 257–281.

    Google Scholar 

  21. Millman J, Halkias C. Integrated Electronics: Analog and Digital Circuits and Systems. New York: McGraw-Hill Book Company, 1972.

    Google Scholar 

  22. Gordon M. Artifacts created by imbalanced electrode impedance. Am J EEG Technol 1980; 20: 149–160.

    Google Scholar 

  23. Jasper HH. The ten twenty electrode system of the International Federation. Electroencephalogr Clin Neurophysiol 1958; 10: 371–375.

    Google Scholar 

  24. Katzudsone RD. EEG recording, electrode placement, and aspects of generator localization. In: Numez PL, ed. Electrical Fields of the Brain. The Neurophysics of the EEG. New York: Oxford University Press, 1981: 176–213.

    Google Scholar 

  25. Demetrescu M. The aperiodic character of the electroencephalogram (EEG): A new approach to data, analysis and condensation. Physiologist 1975; 18: 189.

    Google Scholar 

  26. Bickford GR, Billinger T, Fleming NT, Stewart LE. The compressed spectral array: A pictorial EEG. Proc San Diedo, Biomed Symp 1975; 11: 117.

    Google Scholar 

  27. Stoeckel H, Schwilden H, Lauwen PM, Schüttler J. EEG indices for evaluation of depth of anaesthesia. Br J Anaesth 1980; 53: 117.

    Google Scholar 

  28. Rampil IJ, Sasse FJ, Smith NT, et al. Spectral edge frequency — a new correlate of anesthetic depth. Anesthesiology 1980; 53: S12.

    Google Scholar 

  29. Fleming RA, Smith NT. Density modulation: A technique for the display of three-variable data in patient monitoring. Anesthesiology 1979; 50: 543–546.

    PubMed  CAS  Google Scholar 

  30. Gregory TG, Pettkus DC. An electroencephalographic processing algorithm specifically intended for analysis of cerebral activity. J Clin Monit 1986; 2: 190–197.

    Article  PubMed  CAS  Google Scholar 

  31. Oppenheim AV, Scharfer RW. Digital Signal Processing. Englewood Hall, New York: Prentice Hall, 1975.

    Google Scholar 

  32. Stockard J, Bickford RG. The neurophysiology of anesthesia. In: Gordon E, ed. A Basis and Practice of Neuro-Anesthesia. Amsterdam: Exerpta Medica, 1975.

    Google Scholar 

  33. Clark DL, Hosik EC, Rosner B. Neuroptahological effects of different anesthetics in unconscious man. J Appl Physiol 1971; 31: 884.

    PubMed  CAS  Google Scholar 

  34. Malkin M, Eisenberg D. Correlation between clinical and electroencephalographic findings during the first stage of nitrous oxide anesthesia. J Oral Surg 1963; 38: 564.

    Google Scholar 

  35. Clark DL, Rosner BS. Neurophysiological effects of general anesthetics: 1. The electroencephalogram and its sensory evoked potentials in man. Anesthesiology 1972; 38: 564.

    Google Scholar 

  36. Backman LE, Loefstroem B, Widen L. Electroencephalography in halothane anaesthesia. Acta Anaesthesiol Scand 1962; 8: 115.

    Google Scholar 

  37. Neigh JL, Garman JP, Harp JR. The electroencephalograhic pattern during anesthesia with ethrane: Effect of depth of anesthesia, PaCO2, and nitrous oxide. Anesthesiology 1971; 35: 482–487.

    PubMed  CAS  Google Scholar 

  38. Homi J, Kouchigeri HM, Eckenhoff JB, Linde HW. A new anesthetic agent-forane (isoflurane): Preliminary observations in man. Anesth Analg 1972; 51: 439.

    PubMed  CAS  Google Scholar 

  39. Eger II EI, Stevens WC, Cromwell TH. The electroencephalogram in man anesthetized with Forane. Anesthesiology 1971; 53: 504–508.

    Google Scholar 

  40. Ingvar DH, Spolund B, Ardo A. Correlation between dominant EEG frequency, cerebral oxygen uptake and blood flow. Electroenceph Clin Neurophysiol 1976; 41: 268–276.

    Article  PubMed  CAS  Google Scholar 

  41. Woodburn DM, Rollins LT, Gardner MD. Effect of carbon dioxide on the brain excitability and electrolytes. J Physiol (London) 1957; 129: 798.

    Google Scholar 

  42. Burton GW. Metabolic acidosis during profound hypothermia. Anaesthesia 1964; 19: 118.

    Google Scholar 

  43. Darimont PC, Jenkins LC. The influence of intravenous anaesthetics on enflurane-induced central nervous system seizure ativity. Can Anaesth Soc J 1977; 24: 42.

    Article  PubMed  CAS  Google Scholar 

  44. Freye E, Brückner J, Latasch L. No difference in electroencephalographic power spectra or sensory-evoked potentials in patients anaesthetized with desflurane or sevoflurane. Eur J Anaesthesiol 2004; 21: 373–378.

    Article  PubMed  CAS  Google Scholar 

  45. Moruzzi G. The sleep waking cycle. Rev Physiol 1972; 4: 2–145.

    Google Scholar 

  46. Ghonneim MM, Yamada T. Etomidate: A clinical and electroencephalographic comparison with thiopental. Anesth Analg 1977; 57: 479.

    Google Scholar 

  47. Sebel PS, Bovill JG, Wauquier A, Rog P. Effects of high dose fentanyl anesthesia on the electroencephalogram. Anesthesiology 1981; 55: 203–211.

    PubMed  CAS  Google Scholar 

  48. Smith NT, Dec-Siilver H, Sanford TJ, et al. EEGs during high-dose fentanyl, sufentanil-, or morphine-oxygen anesthesia. Anesth Analg 1984; 63: 386.

    PubMed  CAS  Google Scholar 

  49. Klein SL, Klein VL, End G. The electroenecephalogram under fentanyl-N2O anesthesia. Anesthesiology 1979; 51: S3.

    Google Scholar 

  50. Bovill JG, Sebel PS, Wauquier A, et al. Influence of high-dose alfentanil in anaesthesia on the electroencephalogram: Correlation with plasma concentrations. Br J Anaesth 1983; 55: 199S–209S.

    PubMed  Google Scholar 

  51. Freye E, Gupta BN. Cardiovasclar effects on selective perfusion of the fourth cerebral ventricle in cats with fentanyl, naloxone and methohexital. Ind J Exp Biol 1980; 18: 29–31.

    CAS  Google Scholar 

  52. De Castro J, Van de Water A, Wouters L, et al. Comparative study of cardiovascular, neurological, and metabolic side effects of eight narcotics in dogs. Acta Anaesth Belg 1979; 30: 5–99.

    PubMed  Google Scholar 

  53. Scott JG, Cooke JE, Stanski DR. Electroencephalographic quantitation of opioid effects: Comparative pharmacodynamics of fentanyl and sufentanil. Anesthesiology 1991; 74: 34–42.

    PubMed  CAS  Google Scholar 

  54. Hug CLJ. Lipid solubility, pharmacokinetics and the EEG: Are you better off today when you were years ago? Anesthesiology 1985; 62: 221–225.

    PubMed  CAS  Google Scholar 

  55. Howie M, Kyre J, Hoffer L, et al. Pharmacokinetic and electroenecphalographic confirmation of alfentanils short duration. Anesthesiology 1983; 59: A318.

    Google Scholar 

  56. Scott JC, Ponganis KV, Stanski DR. EEG quantification of narcotic effect: The comparative pharmacodynamics of fentanyl and alfentanil. Anesthesiology 1985; 62: 234–241.

    PubMed  CAS  Google Scholar 

  57. Freye E, Azevedo L, Hartung E. Reversal of fentanyl-related respiratory depression with nalbuphine; effects on the CO2-response curve of man. Acta Anaesth Belg 1985; 36: 365–374.

    PubMed  CAS  Google Scholar 

  58. Freye E, Levy JV. Tramadol produces analgesia, inmproves cognitive function and increases power in the fast EEG spectrum in elderly patients with osteoarthritis. J Rheumatol 2005; submitted for publication.

    Google Scholar 

  59. Coetzee JF, Maritz JS, Du Toit JC. Effect of tramadol on depth of anaesthesia. Br J Aneasth 1996; 76: 415–418.

    CAS  Google Scholar 

  60. Saletu B, Grünberger J, Berner P, Koeppen D. On difference between 1,5-and 1,4-benzodiazepines: Pharmaco EEG and psychometric studies with clobazepam and lorazepam. In: Hindmarch I, Stormer PD, Trimble ED, eds. Human Pharmacology and Clinical Application. London: Royal Soc Med Int Cong Symp Series, 1985: 23-46.

    Google Scholar 

  61. Hartung E, Freye E. An open comparison of propofol and enflurane for prolonged abdominal operations. Anaesthesia 1988; 43: 105–107.

    PubMed  Google Scholar 

  62. Ferrer-Allado T, Brechner VL, Dymond H. Ketamine-induced electroconvulsive phenomena in the human limb and thalamic regions. Anesthesiology 1973; 38: 333.

    PubMed  CAS  Google Scholar 

  63. Thompson GE. Ketamine-induced convulsion. Anesthesiology 1972; 37: 662.

    PubMed  CAS  Google Scholar 

  64. White PF, Schüttler J, Shafer A, et al. Comparative pharmacology of the ketamine isomers. Br J Anaesth 1985; 57: 197–203.

    PubMed  CAS  Google Scholar 

  65. Schüttler J, Stanski DR, White PF, et al. Pharmacodynamic modeling of the EEG effects of ketamine and its enantiomers in man. J Phamacokinet Biopharm 1987; 15: 241–253.

    Google Scholar 

  66. Rampil IJ, Holzer JA, Quest DO, et al. Prognostic value of computerized EEG analysis during carotid endarterctomy. Anesth Analg 1974; 62: 186–192.

    Google Scholar 

  67. Smidt M, Sharborough FW, Andrson RE, Michenfelder JD. Cerebral blood flow measurements and electroencephalograms during carotid endarterectomy. J Neurosurg 1974; 41: 310–320.

    Google Scholar 

  68. Trojabard W, Boysen G. Relation between EEG regional cerebral blood flow and internal carotid artery endarterectomy. Electroenceph Clin Neurophysiol 1973; 34: 61.

    Google Scholar 

  69. Niedermeyer E, Lopez dS, F. Electroencephalography: Basic Principles, Clinical Application, and Related Fields. Baltimore: Urban & Schwarzenberg, 1982.

    Google Scholar 

  70. Silvay G, Mindlich BP, Owitz S, et al. Evaluation of a new cerebral function monitor during open-heart surgery. MSJM 1983; 546: 44–47.

    Google Scholar 

  71. Sharborough FW, Messick JM, Smidt TM. Correlation of continuous electroencephalograms with cerebral blood flow measurements during carotid endarterctomy. Stroke 1973; 4: 674–683.

    Google Scholar 

  72. Study ECftACA. Endarterectomy or asymptomatic carotid artery stenosis. JAMA 1995; 273: 1421–1428.

    Google Scholar 

  73. Moore WS, Barnett HJM, Beebe HG, et al. Guidelines for carotid endarterectomy. Stroke 1995; 26: 188–201.

    PubMed  CAS  Google Scholar 

  74. Wober C, Zeitlhofer J, Asenbaum S, et al. Monitoring of median nerve somatosensory evoked potentials in carotid surgery. J Clin Neurophysiol 1989; 15: 429–438.

    Google Scholar 

  75. Green RM, Messick WJ, Ricotta JJ, et al. Benefits, shortcomings and costs of EEG monitoring. Ann Surg 1985; 201: 785–792.

    PubMed  CAS  Google Scholar 

  76. Kresowik TF, Worsey J, Khoury MD, et al. Limitations of electroencephalographic monitoring in the detection of cerebral ischemia accompanying carotid endarterectomy. J Vasc Surg 1991; 13: 439–443.

    PubMed  CAS  Google Scholar 

  77. Fode NC, Sundt TM, Robertson JT, et al. Multicenter retrospective review of results and complications of carotid endarterectomy in 1981. Stroke 1986; 17: 370–376.

    PubMed  CAS  Google Scholar 

  78. Deriu GP, Ballotta EN, Franceschi L, et al. EEG monitoring, selective shunting and patch graft angioplasty in carotid endarterectomy. Early and longterm results. J Cardiovasc Surg 1988; 29: 499–508.

    CAS  Google Scholar 

  79. Nuwer MR. Intraoperative electroencephalography. J Clin Neurophysiol 1993; 10: 437–444.

    PubMed  CAS  Google Scholar 

  80. Lennard N, Smith J, Dumville J, et al. Prevention of postoperative thrombotic stroke after carotid endarterectomy: The role of transcranial Doppler ultrasound. J Vasc Surg 1997; 26: 579–584.

    Article  PubMed  CAS  Google Scholar 

  81. Ferguson GG. Intra-operative monitoring and internal shunts: Are they necessary in carotid endarterctomy? Stroke 1982; 13: 287.

    PubMed  CAS  Google Scholar 

  82. Cohen ME, Olzowska JS, Subramamian S. Electroenecephalographic and neurologic correlates of deep hypothermia and circular asrrest in infants. Ann Thorac Surg 1978; 20: 238–244.

    Google Scholar 

  83. Branthwaite MA. Prevention of neurological damage during open-heart surgery. Thorax 1977; 20: 258–261.

    Google Scholar 

  84. Bischoff P, Kochs E, Droese D, et al. Topographischquantitative EEG-Analyse der paradoxen Arousalreaktion. Anästhesist 1993; 42: 142–148.

    CAS  Google Scholar 

  85. Bischoff P, Kochs E, Haferkorn D, Schulte am Esch J. Intraoperative EEG changes in relation to the surgical procedure during isoflurane-nitrous oxide anesthesia: Hysterectomy versus mastectomy. J Clin Anesth 1996; 8: 36–43.

    Article  PubMed  Google Scholar 

  86. Kochs E, Bischoff P, Pichlmeier U, Schulte am Esch J. Surgical stimulation induces changes in brain electrical activity during isoflurane/nitrous oxide anesthesia. A topographic electroencephalographic analysis. Anesthesiology 1994; 80: 1026–1034.

    PubMed  CAS  Google Scholar 

  87. Rampil IJ, Cai H, Embree PB, Greenwald SD. “Paradoxical Arousal” during bispectral index monitoring. Anesthesiology 2000; 91: A107.

    Google Scholar 

  88. Messieha ZS, Ananda RC, Hoffman WE, et al. BIS speeds awakening of pediatric patients having dental restorations under general anesthesia. Anesth Analg 2004; 98: S1, S221, S82.

    Google Scholar 

  89. Tang J, White PF, Wender RH. Assessment of Patient State Index (PSI) and Bispectral Index (BIS) values during the recovery period after outpatient surgery. Anesth Analg 2004; 98: S1, S125, S282.

    Google Scholar 

  90. Vernon J, Bowles S, Sebel PS, Chamoun N. EEG bispectrum predicts movement at incision during isoflurane or propofol anesthesia. Anesthesiology 1992; 77: A502.

    Google Scholar 

  91. Kearse L, Rosow C, Zaslavsky A, et al. Bispectral analysis of the electroencephalogram predicts conscious processing of information during propofol sedation and hypnosis. Anesthesiology 1998; 88: 25–43.

    PubMed  CAS  Google Scholar 

  92. Agrawal D, Feldman HA, Krauss B, Waltzman ML. Bispectral Index monitoring quantifies depth of sedation during emergency dept procedural sedation and analgesia in children. Ann Emerg Med 2004; 43: 247–255.

    PubMed  Google Scholar 

  93. Ahonen J, Sahlman A, Yli-Hankala A, et al. No effect of cardiopulmonary bypass on hypnosis in patients anaesthetized with propofol and alfentanil. Br J Anaesth 2004; 92: 137–139.

    Article  PubMed  CAS  Google Scholar 

  94. Ekman A, Lindholm ML, Lennmarken C, Sandin R. Reduction in the incidence of awareness using BIS monitoring. Acta Anaesth Scand 2004; 48: 20–26.

    Article  PubMed  CAS  Google Scholar 

  95. Shapiro BA. Bispectral Index: Better information for sedation in the intensive care unit? Crit Care Med 1999; 27: 1663–1664.

    PubMed  CAS  Google Scholar 

  96. Jaspers L, De Deyne C, Sels L, et al. Continuous BIS-EEG monitoring to evaluate depth of sedation in critically ill patients. Int Care Med 1999; 25: S251.

    Google Scholar 

  97. Riker RR, Fraser GL. Sedation in the intensive care unit: Refining models and defining questions. Crit Care Med 2002; 30: 1661–1663.

    PubMed  Google Scholar 

  98. Kodaka M, Okamotot Y, Handa F, et al. Relation between fentanyl dose and predicted EC50 of propofol for laryngeal mask insertion. Br J Anaesth 2004; 92: 238–241.

    PubMed  CAS  Google Scholar 

  99. Gurses E, Sungurtekin H, Tomatir E, Dogan H. Assessing propofol induction of anesthesia dose using Bispectral Index analysis. Anesth Analg 2004; 98: 128–131.

    PubMed  CAS  Google Scholar 

  100. Kearse L, Saini V, deBros F, Chamoun N. Bispectral analysis of EEG may predict anesthetic depth during narcotic induction. Anesthesiology 1991; 75: A175.

    Google Scholar 

  101. Sebel PS, Bowles S, Saini V, Chamoun N. Accuracy of EEG in predicting movement at incision during isoflurane anesthesia. Anesthesiology 1991; 75: A446.

    Google Scholar 

  102. Vernon J, Bowles S, Sebel PS, Chamoun N. EEG bispectrum predicts movement at incision during isoflurane or propofol anesthesia. Anesthesiology 1992; 77: A502.

    Google Scholar 

  103. Alkire MT. Quantitative EEG correlations with brain glucose metabolic rate during anesthesia in volunteers. Anesthesiology 1998; 89: 323–333.

    PubMed  CAS  Google Scholar 

  104. Anderson RE, Barr G, Owell A, Jakobsson J. Entropy during propofol hypnosis including an episode of wakefulness. Anaesthesia 2004; 59: 52–56.

    Article  PubMed  CAS  Google Scholar 

  105. Bein BH, Caliebe D, Tonner PH, et al. Influence of mild hypothermia on state and response entropy and Bispectral Index (BIS) values during cardiopulmonary bypass. Anesthesiology 2003; 99: A327.

    Google Scholar 

  106. Struys MVA, Mortier E. The ability of BIS, spectral entropy and predicted propofol concentrations to measure patient responsiveness during anesthesia with propofol and remifentanil. Anesthesiology 2003; 99: A346.

    Article  Google Scholar 

  107. Bruhn J, Ropcke H, Hoeft A. Approximate entropy as an electroencephalographic measure of anesthetic drug effect during desflurane anesthesia. Anesthesiology 2000; 92: 715–726.

    PubMed  CAS  Google Scholar 

  108. Rampil IJ, Matteo RS. Changes in EEG spectral edge frequency correlate with the hemodynamic response to laryngoscopy and intubation. Anesthesiology 1987; 67: 139–142.

    PubMed  CAS  Google Scholar 

  109. Schwilden H, Stoeckel H. Untersuchungen über verschiedene EEG-Parameter als Indikatoren des Narkosezustands. Anästh Intensivther Notfallmed 1980; 15: 279–286.

    PubMed  CAS  Google Scholar 

  110. Sebel PS, Lang E, Rampil IJ, et al. A multicenter study of bispectral electroencephalogram analysis for monitoring anesthetic effect. Anesth Analg 1997; 84: 891–899.

    PubMed  CAS  Google Scholar 

  111. Bruhn J, Ropcke H, Rehberg B, et al. Electroencephalogram approximate entropy correctly classifies the occurrence of burst suppression pattern as increasing anesthetic drug effect. Anesthesiology 2000; 93: 981–985.

    PubMed  CAS  Google Scholar 

  112. Widman G, Schreiber T, Rehberg B, et al. Quantification of depth of anesthesia by nonlinear time series analysis of brain electrical activity. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 2000; 62: 4898–4903.

    PubMed  CAS  Google Scholar 

  113. Steyn-Ross DA, Steyn-Ross ML, Wilcocks LC, Sleigh JW. Toward a theory of the general-anesthetic-induced phase transition of the cerebral cortex. II. Numerical simulations, spectral entropy, and correlation times. Phys Rev E Stat Nonlin Soft Matter Phys 2001; 64: 011918.

    PubMed  CAS  Google Scholar 

  114. Schneider G, Heglmeier S, Schneider J, et al. Patient State Index (PSI) measures depth of sedation in intensive care patients. Int Care Med 2004; 30: 213–216.

    Article  Google Scholar 

  115. Tang J, White PF, Wender RH. Assessment of Patient State Index (PSI) and Bispectral Index (BIS) values during the recovery period after outpatient surgery. Anesth Analg 2004; 98: S1, S125, S282.

    Google Scholar 

  116. Soto RG, Fu ES, Creighton DD. The impact of addition of N20 on BIS and PSI during a stable sevoflurane anesthetic. Anesthesiology 2003; 99: A319.

    Google Scholar 

  117. Kugler H. Elektroenzephalographie in Klinik und Praxis. Stuttgart, New York: Thieme, 1981.

    Google Scholar 

  118. Bischoff P, Schmidt GN, Jensen K, et al. Narcotrend and Bispectral IndexTM to indicate different conditions of anesthesia. Anesthesiology 2002; 97: A541.

    Google Scholar 

  119. Kreuer S, Biedler A, Larsen R, et al. The Narcotrend a new EEG monitor allows faster emergence and a reduction of drug consumption in propofol/remifentanil anesthesia comparison with Bispectral Index monitoring and a Standard Anesthetic Practice Group. Anesthesiology 2002; 97: A1143.

    Google Scholar 

  120. Bischoff P, Schmidt G, Voigt M, et al. Bispectral Index, Narcotrend, classic electrophysiological and hemodynamic parameters during emergence from target controlled infusion of propofol. J Neurosurg Anesthesiol 2001; 13: 375.

    Google Scholar 

  121. Schmidt GN, Bischoff P, Standl T, et al. Narcotrend® and Bispectral Index® monitor are superior to classic electroencephalographic parameters for the assessment of anesthetic states during propofol-remifentanil anesthesia. Anesthesiology 2003; 99: 1072–1077.

    Article  PubMed  CAS  Google Scholar 

  122. Schultz A, Grouven U, Beger FA, Schultz B. The Narcotrend Index: Classification algorithm, correlation with propofol effect-site concentrations, and comparison with spectral parameters. Biomed Technik 2004; 49: 38–42.

    Article  CAS  Google Scholar 

  123. Bauerle K, Greim CA, Schroth M, et al. Prediction of depth of sedation and anaesthesia by the Narcotrend™ EEG monitor. Br J Anaesth 2004; 2: 1–5.

    Google Scholar 

  124. Jang JSR. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans Syst, Man Cybern 1993; 23: 665–685.

    Article  Google Scholar 

  125. Sleigh JW, Donovan J. Comparison of bispectral index, 95% spectral edge frequency and approximate entropy of the EEG, with changes in heart rate variability during induction of general anaesthesia. Br J Anaesth 1999; 82: 666–671.

    PubMed  CAS  Google Scholar 

  126. Struys MRF, Jensen EW, Smith W, et al. Performance of the ARX-derived auditory evoked potential index as an indicator of anesthetic depth. A comparison with BIS and hemodynamic measures during propofol administration. Anesthesiology 2002; 96: 803–816.

    Article  PubMed  Google Scholar 

  127. Technologists ASoE. Guidelines on intraoperative electroencephalography for technologists. Am J End Technol 1998; 38: 24–25.

    Google Scholar 

  128. Isley MR, Cohen MJ, Wadsworth JS, et al. Multimodality neuromonitoring for carotid endarterectomy surgery: Determination of critical ischaemic thresholds. Am J End Technol 1098; 38: 65–122.

    Google Scholar 

  129. Izac SM, Banoczi W. The Wada test. Am J End Technol 1999; 38: 23–33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Freye, E., Levy, J.V. (2005). Cerebral Monitoring in the Operating Room and the Intensive Care Unit: An Introductory for the Clinician and a Guide for the Novice Wanting to Open a Window to the Brain. In: Freye, E. (eds) Cerebral Monitoring in the OR and ICU. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4486-0_1

Download citation

Publish with us

Policies and ethics