Skip to main content

Chaotic Diffusion and Effective Stability of Jupiter Trojans

  • Conference paper

Abstract

It has recently been shown that Jupiter Trojans may exhibit chaotic behavior, a fact that has put in question their presumed long term stability. Previous numerical results suggest a slow dispersion of the Trojan swarms, but the extent of the ‘effective’ stability region in orbital elements space is still an open problem. In this paper, we tackle this problem by means of extensive numerical integrations. First, a set of 3,200 fictitious objects and 667 numbered Trojans is integrated for 4 Myrs and their Lyapunov time, T L, is estimated. The ones following chaotic orbits are then integrated for 1 Gyr, or until they escape from the Trojan region. The results of these experiments are presented in the form of maps of T L and the escape time, T E, in the space of proper elements. An effective stability region for 1 Gyr is defined on these maps, in which chaotic orbits also exist. The distribution of the numbered Trojans follows closely the T E = 1 Gyr level curve, with 86% of the bodies lying inside and 14% outside the stability region. This result is confirmed by a 4.5 Gyr integration of the 246 chaotic numbered Trojans, which showed that 17% of the numbered Trojans are unstable over the age of the solar system. We show that the size distributions of the stable and unstable populations are nearly identical. Thus, the existence of unstable bodies should not be the result of a size-dependent transport mechanism but, rather, the result of chaotic diffusion. Finally, in the large chaotic region that surrounds the stability zone, a statistical correlation between T L and T E is found.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beaugé, C. and Roig, F.: 2001, ‘A semianalytical model for the motion of the Trojan Asteroids: proper elements and families’, Icarus 153, 391–415.

    Article  ADS  Google Scholar 

  • Celletti, A. and Giorgilli, A.: 1991, ‘On the stability of the Lagrangian points in the spatial restricted problem of three bodies’, Celest. Mech. Dyn. Astr. 50, 31–58.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Dvorak, R. and Tsiganis, K.: 2000, ‘Why do Trojan ASCs (not) escape?’, Celest. Mech. Dyn. Astr. 78, 125–136.

    Article  ADS  MATH  Google Scholar 

  • Érdi, B.: 1988, ‘Long periodic perturbations of Trojan asteroids’, Celest. Mech. 43, 303–308.

    ADS  MATH  Google Scholar 

  • Érdi, B.: 1997, ‘The Trojan problem’, Celest. Mech. Dyn. Astr. 65, 149–164.

    Article  ADS  MATH  Google Scholar 

  • Farinella, P. and Vokrouhlický, D.: 1999, ‘Semi-major axis mobility of asteroid fragments’, Science 283, 1507–1510.

    Article  ADS  Google Scholar 

  • Fernández, Y. R., Sheppard S. S., and Jewitt D.: 2003, ‘The Albedo distribution of Jovian Trojan asteroids’, Astron. J. 126, 1563–1574.

    Article  ADS  Google Scholar 

  • Giorgilli, A. and Skokos, C.: 1997, ‘On the stability of the Trojan asteroids’, Astron. Astrophys. 317, 254–261.

    ADS  Google Scholar 

  • Gomes, R. S.: 1998, ‘Dynamical effects of planetary migration on primordial Trojan-type asteroids’, Astron. J. 116, 2590–2597.

    Article  ADS  Google Scholar 

  • Lecar, M., Franklin, F. and Murison, M.: 1992, ‘On predicting long-term orbital instability — A relation between the Lyapunov time and sudden orbital transitions’, Astron. J. 104, 1230–1236.

    Article  ADS  Google Scholar 

  • Levison, H. F. and Duncan, M. J.: 1994, ‘The long-term dynamical behavior of short-period comets’, Icarus 108, 18–36.

    Article  ADS  Google Scholar 

  • Levison, H., Shoemaker, E. M. and Shoemaker, C. S.: 1997, ‘The dispersal of the Trojan asteroid swarm’, Nature 385, 42–44.

    Article  ADS  Google Scholar 

  • Marzari, F. and Scholl, H.: 2002, ‘On the Instability of Jupiter’s Trojans’, Icarus 159, 328–338.

    Article  ADS  Google Scholar 

  • Marzari, F., Tricarico, P. and Scholl, H.: 2003, ‘Stability of Jupiter Trojans investigated using frequency map analysis: the MATROS project’, Mon. Not. R. Astron. Soc. 345, 1091–1100.

    Article  ADS  Google Scholar 

  • Milani, A.: 1993, ‘The Trojan asteroid belt: proper elements, stability, chaos and families’, Celest. Mech. Dyn. Astron. 57, 59–94.

    Article  ADS  MathSciNet  Google Scholar 

  • Milani, A.: 1994, The Dynamics of the Trojan Asteroids. IAU Symp. 160: Asteroids, Comets, Meteors, 1993, pp. 159–174.

    Google Scholar 

  • Milani, A. and Nobili, A. M.: 1992, ‘An example of stable chaos in the Solar System’, Nature 357, 569–571.

    Article  ADS  Google Scholar 

  • Michtchenko, T. A., Beaugé, C. and Roig, F.: 2001, ‘Planetary migration and the effects of mean motion resonances on Jupiter’s Trojan asteroids’, Astron. J. 122, 3485–3491.

    Article  ADS  Google Scholar 

  • Morais, M. H. M.: 1999, ‘A secular theory for Trojan-type motion’, Astron. Astrophys. 350, 318–326.

    ADS  Google Scholar 

  • Morais, M. H. M.: 2001, ‘Hamiltonian formulation of the secular theory for Trojan-type motion’, Astron. Astrophys. 369, 677–689.

    Article  ADS  MATH  Google Scholar 

  • Murray, N. and Holman, M.: 1997, ‘Diffusive chaos in the outer asteroid belt’, Astron. J. 114, 1246–1259.

    Article  ADS  Google Scholar 

  • Namouni, F. and Murray, C. D.: 2000, The effect of eccentricity and inclination on the motion near the Lagrangian points L 4 and L 5; Celest. Mech. Dyn. Astron. 76, 131–138.

    Article  ADS  MATH  Google Scholar 

  • Nesvorný, D. and Dones, L.: 2002, How long-lived are the hypothetical Trojan populations of Saturn, Uranus, and Neptune?’, Icarus 160, 271–288.

    Article  ADS  Google Scholar 

  • Nesvorný, D., Thomas, F., Ferraz-Mello, S. and Morbidelli A.: 2002, ‘A perturbative treatment of the co-orbital motion’, Celest. Mech. Dyn. Astron. 82, 323–361.

    Article  ADS  MATH  Google Scholar 

  • Rabe, E.: 1967, ‘Third-order stability of the long-period Trojan librations’, Astron. J. 72, 10–19.

    Article  ADS  Google Scholar 

  • Robutel, P., Gabern, F. and Jorba, A.: 2005, ‘The observed Trojans and the global dynamics around the Lagrangian points of the Sun-Jupiter system’, Celest. Mech. Dynam. Astron. 92, 55–71.

    Article  ADS  MathSciNet  Google Scholar 

  • Shevchenko, I. I.: 1998, ‘On the recurrence and Lyapunov time scales of the motion near the chaos border’, Phys. Lett. A 241, 53–60.

    Article  ADS  Google Scholar 

  • Skokos, C. and Dokoumetzidis, A.: 2001, ‘Effective stability of the Trojan asteroids’, Astron. Astrophys. 367, 729–736.

    Article  ADS  Google Scholar 

  • Tsiganis, K., Dvorak, R. and Pilat-Lohinger, E.: 2000a, ‘Thersites: a ‘jumping’ Trojan?’, Astron. Astrophys. 354, 1091–1100.

    ADS  Google Scholar 

  • Tsiganis, K., Varvoglis, H. and Hadjidemetriou, J. D.: 2000b, ‘Stable chaos in the 12:7 mean motion resonance and its relation to the stickiness effect’, Icarus 146, 240–252.

    Article  ADS  Google Scholar 

  • Tsiganis, K., Varvoglis, H. and Hadjidemetriou, J. D.: 2002a. ‘Stable chaos in high-order Jovian resonances’, Icarus 155, 454–474.

    Article  ADS  Google Scholar 

  • Tsiganis, K., Varvoglis, H. and Hadjidemetriou, J. D.: 2002b, ‘Stable chaos versus Kirkwood gaps in the asteroid belt: a comparative study of mean motion resonances’, Icarus 159, 284–299.

    Article  ADS  Google Scholar 

  • Wisdom, J. and Holman M.: 1991, ‘Symplectic maps for the n-body problem’, Astron. J. 102, 1528–1538.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rudolf Dvorak Sylvio Ferraz-Mello

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Tsiganis, K., Varvoglis, H., Dvorak, R. (2005). Chaotic Diffusion and Effective Stability of Jupiter Trojans. In: Dvorak, R., Ferraz-Mello, S. (eds) A Comparison of the Dynamical Evolution of Planetary Systems. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4466-6_5

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4466-6_5

  • Received:

  • Revised:

  • Accepted:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4218-8

  • Online ISBN: 978-1-4020-4466-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics