Skip to main content

Long-term changes and seasonal development of phytoplankton in a strongly stratified, hypertrophic lake

  • Chapter

Part of the book series: Developments in Hydrobiology ((DIHY,volume 182))

Abstract

Changes in the phytoplankton community of the hypertrophic, sharply stratified Lake Verevi have been studied over eight decades. Due to irregular discharge of urban wastewater, the trophic state of the lake has changed from moderately eutrophic to hypertrophic. We found that the trophic state in summer increased in the 1980s and remained at a hypertrophic level since then. Planktothrix agardhii was recorded first in the 1950s and became the dominant species in the 1980s, forming biomass maxima under the ice and in the metalimnion during the vegetation period. In summer 1989, P. agardhii contributed almost 100% of the phytoplankton biomass. Generally, the highest biomass values occurred in the metalimnion. In spring, when P. agardhii was less numerous, diatoms and cryptophytes prevailed. In springs 2000 and 2001 different diatoms dominated — Synedra acus var. angustissima (18.6 g m−3) and Cyclostephanos dubius (9.2 g m−3), respectively. In recent years, the spring overturn has been absent. In the conditions of strong thermal stratification sharp vertical gradients of light and nutrients caused a large number of vertically narrow niches in the water column. During a typical summer stage, the epilimnion, dominated by small flagellated chrysophytes, is nearly mesotrophic, and water transparency may reach 4 m. The lower part of the water column is hypertrophic with different species of cryptophytes and euglenophytes. A characteristic feature is the higher diversity of Chlorococcales. Often, species could form their peaks of biomass in very narrow layers, e.g. in August 2001 Ceratium hirundinella (18.6 g m−3) was found at a depth of 5 m (the lower part of the metalimnion with hypoxic conditions), Cryptomonas spp. (56 g m−3) at 6 m (with traces of oxygen and a relatively high content of dissolved organic matter) and euglenophytes (0.6 g m−3) at 7 m and deeper (without oxygen and a high content of dissolved organic matter).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, M., F. Gervais & U. Siedel, 2000. Phytoplankton composition in the chemocline of mesotrophic lakes. Archiv für Hydrobiologie — Advances in Limnology 55: 513–530.

    CAS  Google Scholar 

  • Berger, C., 1984. Consistent blooming of Oscillatoria agardhii Gom. in shallow hypertrophic lake. Verhandlung Internationale Vereinigung für theoretische und angewande Limnologie 22: 910–916.

    Google Scholar 

  • Boone, D. R., R. W. Castenholz & G. M. Garrity, (eds) 2001. Bergeýs Manual of Systematic Bacteriology. The Archaea and the Deeply Branching and Phototrophic Bacteria. Springer, New York, I: 1–721.

    Google Scholar 

  • Davey, M. C. & S. I. Heany, 1989. The control of sub-surface maxima of diatoms in a stratified lake by physical, chemical and biological factors. Journal of Plankton Research 11: 1185–1189.

    CAS  Google Scholar 

  • Gasol, J. M., J. Garcia-Cantizano, R. Massana, F. Peters, R. Guerrero & C. Pedros-Alio, 1991. Diel changes in the microstratification of the metalimnetic community in Lake Cisó. Hydrobiologia 211: 227–240.

    Article  Google Scholar 

  • Gasol, J. M., J. Garcia-Cantizano, R. Massana, F. Peters, R. Guerrero & C. Pedros-Alio, 1993. Physiological ecology of a metalimnetic Cryptomonas population: relationship to light, sulfide and nutrients. Journal of Plankton Research 15: 255–275.

    CAS  Google Scholar 

  • Gervais, F., 1997. Diel vertical migration of Cryptomonas and Chromatium in the deep chlorophyll maximum of an eutrophic lake. Journal of Plankton Research 19: 533–550.

    Google Scholar 

  • Granéli, E., P. Carlsson & C. Legrand, 1999. The role of C, N and P in dissolved and particulate organic matter as a nutrient source for phytoplankton growth, including toxic species. Aquatic Ecology 33: 17–27.

    Article  Google Scholar 

  • Henning, M. & J.-G. Kohl, 1981. Toxic blue-green algae water blooms found in some lakes in the German Democratic Republic. Internationale Revue der gesamten Hydrobiologie 66: 553–561.

    Article  Google Scholar 

  • Huber-Pestalozzi, G., 1938. Das Phytoplankton des Süßwassers. Systematik und Biologie. Die Binnengewässer, Bd XVI, 1. Teil, Allgemeiner Teil. Blaualgen. Bakterien. Pilze, E. Schweizerbartische Verlagsbuchhandlung, Stuttgart: 236 pp.

    Google Scholar 

  • Huber-Pestalozzi, G., 1941. Das Phytoplankton des Süßwassers: Chrysophyten, Farbulose Flagellaten, Heterokonten. E. Schweizerbartische Verlagsbuchhandlung, Stuttgart: 365 pp.

    Google Scholar 

  • Hutchinson, G. E., 1967. A treatise on limnology. Vol. 2: Introduction to lake biology and the limnoplankton. New York, John Wiley & Sons: 1115 pp.

    Google Scholar 

  • Kangur, A., 1991. Kalad. In Timm, H. (eds), State of Lake Verevi. Hydrobiological researches XVII. Tartu: pp. 114–119 [The fishes in Lake Verevi. In Estonian].

    Google Scholar 

  • Klausmeier, Ch. A. & E. Litchman, 2001. Algal games: The vertical distribution of phytoplankton in poorly mixed water columnsLimnology and Oceanography, 46: 1998–2007.

    Google Scholar 

  • Klein, G. & I. Chorus, 1991. Nutrient balances and phytoplankton dynamics in Schlachtensee during oligotrophication. Verhandlung Internationale Vereinigung für theoretische und angewande Limnologie 24: 873–878.

    CAS  Google Scholar 

  • Krienitz, K., P. Kasprzak & R. Koschel, 1996. Long-term study on the influence of eutrophication, restoration and biomanipulation on the structure and development of phytoplankton communities in Feldberger Haussee (Baltic Lake District), Germany. Hydrobiologia 330: 89–110.

    Article  CAS  Google Scholar 

  • Kufel, L. & K. Kalinowska, 1997. Metalimnetic gradients and the vertical distribution of phosphorus in a eutrophic lake. Archiv für Hydrobiologie 140: 309–320.

    CAS  Google Scholar 

  • Kõiv, T.& K. Kangro, 2005. Resource ratios and phytoplankton species composition in a strongly stratified lake. Hydrobiologia 547: 123–135.

    Article  CAS  Google Scholar 

  • Kübar, K., H. Agasild, T. Virro & I. Ott, 2005. Vertical distribution of zooplankton in a strongly stratified hypertrophic lake. Hydrobiologia 547: 151–162.

    Article  Google Scholar 

  • Kümmerlin, R. E., 1998. Taxonomical response of the phytoplankton community of Upper Lake Constance (Bodensee-Obersee) to eutrophication and re-oligotrophication. Archiv für Hydrobiologie Special Issues in Advanced Limnology 53: 109–117.

    Google Scholar 

  • Laugaste, R., 1991. Fütoplankton. In Timm, H. (eds), State of Lake Verevi. Hydrobiological Researches XVII. Tartu: pp. 69–89 [Phytoplankton. In Estonian, summary in English].

    Google Scholar 

  • Lee, R. E., 1999. Phycology. Cambridge University Press, UK, 613 pp.

    Google Scholar 

  • Legendre, P., & L. Legendre, 1998. Numerical Ecology. Elsevier Science B. V., The Netherlands: 853 pp.

    Google Scholar 

  • Lindholm, T., 1992. Ecological role of depth maxima of phytoplankton. Archiv für Hydrobiologie Beiheft, Ergebnisse der Limnologie 35: 33–45.

    Google Scholar 

  • Lindholm, T. & J. A. O. Meriluoto, 1991. Recurrent depth maxima of the hepatotoxic cyanobacterium Oscillatoria agardhii. Canadian Journal of Fisheries & Aquatic Sciences 48: 1629–1634.

    Article  Google Scholar 

  • Lindholm, T., K. Weppling & H. S. Jensen, 1985. Stratification and primary production in a small brackish lake studied by close-interval siphon sampling. Verhandlung Internationale Vereinigung für theoretische und angewande Limnologie 22: 2190–2194.

    CAS  Google Scholar 

  • Loopmann, A., 1984. Suuremate Eesti järvede morfomeetrilised andmed ja veevahetus. Tallinn: 150 pp. [Morphometrical data and water exchange of larger Estonian lakes. In Estonian].

    Google Scholar 

  • Mann, K. H., 1991. Organisms and Ecosystem. In Barnes, R. S. K. & K. H. Mann (eds.), Fundamentals of Aqatic Ecology. EdinburghBlackwell Science, London: 3–26.

    Google Scholar 

  • Meffert, M.-E., 1989. Planktic unsheated filaments (Cyanophyceae) with polar and central gas vacuoles 2. Biology, population dynamics and biotopes of Limnothrix redekei (van Goor) Meffert. Archiv für Hydrobiologie 116: 257–282.

    Google Scholar 

  • Miracle, M. R. & M. T. Alfonso, 1993. Rotifer vertical distributions in a meromictic basin of Lake Banyoles (Spain). Hydrobiologia 255–256: 371–380.

    Google Scholar 

  • Moed, J. R., H. L. Hoogveld & H. De Haan, 1988. A study of factors regulating the succession of cyanobacteria in Lake Tjeukemeer, The Netherlands. Verhandlung Internationale Vereinigung für theoretische und angewande Limnologie 23: 1894–1897.

    Google Scholar 

  • Moll, R. A. & E. F. Stoermer, 1982. A hypothesis relating trophic status and subsurface chlorophyll maxima of lakes. Archiv für Hydrobiologie 94: 425–440.

    Google Scholar 

  • Eesti järved, 1968. Tallinn, “Valgus”:532 pp. [Estonian lakes. In Estonian].

    Google Scholar 

  • Nicklisch, A., B. Roloff & A. Ratsch, 1991. Competition experiments with two planktic blue-green algae (Oscillatoriaceae). Verhandlung Internationale Vereinigung für theoretische und angewande Limnologie 24: 889–892.

    Google Scholar 

  • Nõges P. & Nõges T. 1998. Stratification of Estonian small lakes studied during hydrooptical expeditions in 1995–97. Proceedings of Estonian Academy of Sciences. Biology. Ecology 47: 268–281.

    Google Scholar 

  • Nõges, T. & K. Kangro, 2005. Primary production of phytoplankton in a strongly stratified temperate lake. Hydrobiologia 547: 105–122.

    Google Scholar 

  • Nõges, P., 2005. Water and nutrient mass balance of temperate partly meromictic Lake Verevi. Hydrobiologia 547: 21–31.

    Google Scholar 

  • Nygaard, G., 1949. Hydrobiological studies on some Danish ponds and lakes II. The quotient hypothesis on some new or little known phytoplankton organisms. Det Kongelige Danske Videnskabernes Selskab 7: 293 pp.

    Google Scholar 

  • Nygaard, G., 1977. Vertical and seasonal distribution of some motile freshwater plankton algae in relation to some environmental factors. Archiv für Hydrobiologie Supplements 51 Algological Studies 18: 67–76.

    Google Scholar 

  • Nygaard, K. & A. Tobiesen, 1993. Bacterivory in algae: A survival strategy during nutrient limitation. Limnology and Oceanography 38: 273–279.

    Article  Google Scholar 

  • Olli, K., 1996. Mass occurrences of cyanobacteria in Estonian waters. Phycologia 36(6th suppl): 156–159.

    Google Scholar 

  • Ott, I., 1987. Mnogoletnie izmenenija letnego fitoplanktona i ih svjazi s ekologičeskimi faktorami v Estonskih ozerah. Dissertation. Manuscript at Tartu University, 203 pp. [Longterm changes of summer phytoplankton in Estonian lakes and their relations with ecological factors. In Russian].

    Google Scholar 

  • Ott, I., T. Kõiv, P. Nõges, A. Kisand, A. Järvalt, & E. Kirt, 2005. General description of Lake Verevi, its ecological status, changes during the past eight decades and restoration problems. Hydrobiologia 547: 1–20.

    Article  CAS  Google Scholar 

  • Ott, I. & R. Laugaste, 1996. Fütoplanktoni koondindeks (FKI), üldistus Eesti järvede kohta. Eesti Keskkonnaministeeriumi infoleht 3: 7–8[The Phytoplankton Compound Quotient (PCQ), generalisation about Estonian small lakes. In Estonian].

    Google Scholar 

  • Ott, I., S. Lokk, A. Mäemets, & R. Laugaste. 1997. Plankton changes in Estonian small lakes in 1951–1993. Proceedings of Estonian Academy of Sciences. Biology. Ecology 46(1/2): 58–79.

    Google Scholar 

  • Pedrós-Alió, C. & R. Guerrero, 1993. Microbial ecology of Lake Cisó. In Jones, J.G. (eds), Plenum Press New York: 155–209.

    Google Scholar 

  • Reynolds, C. S., 1992. Dynamics, selection and composition of phytoplankton in relation to vertical structure in lakes. Archiv für Hydrobiologie Beiheft Ergebnisse der Limnologie 35: 13–31.

    Google Scholar 

  • Reynolds, C. S. & E. G. Bellingher, 1992. Patterns of abundance and dominance of the phytoplankton of Rostherne Mere, England: evidence from an 18-year data set. Aquatic Science 54: 10–36.

    Article  Google Scholar 

  • Riddols, A., 1985. Aspects of nitrogen fixation in Lough Neagh. 1. Acetylene reduction and the frequency of Aphanizomenon flos-aquae heterocysts. 2. Competition between Aphanizomenon flos-aquae, Oscillatoria redekei and Oscillatoria agardhii. Freshwater Biology 15: 299–306.

    Google Scholar 

  • Riikoja, H., 1930. Zur Morphometrie eineiger Seen im Estland. 15: 116–201.

    Google Scholar 

  • Rojo, C. & M. Alvarez-Cobelas, 1994. Population dynamics of Limnothrix redekei, Oscillatoria lancaeformis, Planktothrix agardhii. Hydrobiologia 275–276: 165–171.

    Google Scholar 

  • Rücker, J., C. Wiedner & P. Zippel, 1997. Factors controlling the dominance of Planktothrix agardhii and Limnothrix redekei in eutrophic shallow lakes. Hydrobiologia 342–343: 107–115.

    Google Scholar 

  • Scheffer, M., 1998. Ecology of shallow lakes, In M. B. Usher (ed.) Chapman & Hall, London, Weinheim, New York: 357 pp.

    Google Scholar 

  • Scheffer, M., S. Rinaldi, A. Gragnani, L. R. Mur & E. H. van Nes, 1997. On the dominance of filamentous cyanobacteria in shallow, turbid lake. Ecology 78: 272–282.

    Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in freshwater. Archiv für Hydrobiologie 106: 433–471.

    Google Scholar 

  • Stauffer, R. E., 1987. Vertical nutrient transport and its effects on epilimnetic phosphorus in four calcareous lakes. Hydrobiologia 154: 87–102.

    Article  CAS  Google Scholar 

  • Stewart, A. J. & R. G. Wetzel, 1986. Cryptophytes and other microflagellates as couplers in planktonic community dynamics. Archiv für Hydrobiologie 106: 1–19.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkomnung der quantitativen Phytoplankton Methodik. Mitteilungen internationale Vereingung für theoretische und angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Wetzel R. G., 1983. Limnology. Saunders College Publishing, Philadelphia, London, Toronto: 767 pp.

    Google Scholar 

  • Wetzel R. G. & Likens G. E., 1991. Limnological analyses. Springer-Verlag, New York, Inc: 391 pp.

    Google Scholar 

  • Zingel, P. & I. Ott, 2000. Vertical distribution of planktonic ciliates in strongly stratified temperate lake. Hydrobiologia 435: 19–26.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Kangro, K., Laugaste, R., Nõges, P., Ott, I. (2005). Long-term changes and seasonal development of phytoplankton in a strongly stratified, hypertrophic lake. In: Ott, I., Kõiv, T. (eds) Lake Verevi, Estonia — A Highly Stratified Hypertrophic Lake. Developments in Hydrobiology, vol 182. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4363-5_9

Download citation

Publish with us

Policies and ethics