Advertisement

Long-term changes and seasonal development of phytoplankton in a strongly stratified, hypertrophic lake

  • Kersti Kangro
  • Reet Laugaste
  • Peeter Nõges
  • Ingmar Ott
Chapter
Part of the Developments in Hydrobiology book series (DIHY, volume 182)

Abstract

Changes in the phytoplankton community of the hypertrophic, sharply stratified Lake Verevi have been studied over eight decades. Due to irregular discharge of urban wastewater, the trophic state of the lake has changed from moderately eutrophic to hypertrophic. We found that the trophic state in summer increased in the 1980s and remained at a hypertrophic level since then. Planktothrix agardhii was recorded first in the 1950s and became the dominant species in the 1980s, forming biomass maxima under the ice and in the metalimnion during the vegetation period. In summer 1989, P. agardhii contributed almost 100% of the phytoplankton biomass. Generally, the highest biomass values occurred in the metalimnion. In spring, when P. agardhii was less numerous, diatoms and cryptophytes prevailed. In springs 2000 and 2001 different diatoms dominated — Synedra acus var. angustissima (18.6 g m−3) and Cyclostephanos dubius (9.2 g m−3), respectively. In recent years, the spring overturn has been absent. In the conditions of strong thermal stratification sharp vertical gradients of light and nutrients caused a large number of vertically narrow niches in the water column. During a typical summer stage, the epilimnion, dominated by small flagellated chrysophytes, is nearly mesotrophic, and water transparency may reach 4 m. The lower part of the water column is hypertrophic with different species of cryptophytes and euglenophytes. A characteristic feature is the higher diversity of Chlorococcales. Often, species could form their peaks of biomass in very narrow layers, e.g. in August 2001 Ceratium hirundinella (18.6 g m−3) was found at a depth of 5 m (the lower part of the metalimnion with hypoxic conditions), Cryptomonas spp. (56 g m−3) at 6 m (with traces of oxygen and a relatively high content of dissolved organic matter) and euglenophytes (0.6 g m−3) at 7 m and deeper (without oxygen and a high content of dissolved organic matter).

Key words

phytoplankton long-term changes vertical distribution seasonal dynamics Planktothrix agardhii 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, M., F. Gervais & U. Siedel, 2000. Phytoplankton composition in the chemocline of mesotrophic lakes. Archiv für Hydrobiologie — Advances in Limnology 55: 513–530.Google Scholar
  2. Berger, C., 1984. Consistent blooming of Oscillatoria agardhii Gom. in shallow hypertrophic lake. Verhandlung Internationale Vereinigung für theoretische und angewande Limnologie 22: 910–916.Google Scholar
  3. Boone, D. R., R. W. Castenholz & G. M. Garrity, (eds) 2001. Bergeýs Manual of Systematic Bacteriology. The Archaea and the Deeply Branching and Phototrophic Bacteria. Springer, New York, I: 1–721.Google Scholar
  4. Davey, M. C. & S. I. Heany, 1989. The control of sub-surface maxima of diatoms in a stratified lake by physical, chemical and biological factors. Journal of Plankton Research 11: 1185–1189.Google Scholar
  5. Gasol, J. M., J. Garcia-Cantizano, R. Massana, F. Peters, R. Guerrero & C. Pedros-Alio, 1991. Diel changes in the microstratification of the metalimnetic community in Lake Cisó. Hydrobiologia 211: 227–240.CrossRefGoogle Scholar
  6. Gasol, J. M., J. Garcia-Cantizano, R. Massana, F. Peters, R. Guerrero & C. Pedros-Alio, 1993. Physiological ecology of a metalimnetic Cryptomonas population: relationship to light, sulfide and nutrients. Journal of Plankton Research 15: 255–275.Google Scholar
  7. Gervais, F., 1997. Diel vertical migration of Cryptomonas and Chromatium in the deep chlorophyll maximum of an eutrophic lake. Journal of Plankton Research 19: 533–550.Google Scholar
  8. Granéli, E., P. Carlsson & C. Legrand, 1999. The role of C, N and P in dissolved and particulate organic matter as a nutrient source for phytoplankton growth, including toxic species. Aquatic Ecology 33: 17–27.CrossRefGoogle Scholar
  9. Henning, M. & J.-G. Kohl, 1981. Toxic blue-green algae water blooms found in some lakes in the German Democratic Republic. Internationale Revue der gesamten Hydrobiologie 66: 553–561.CrossRefGoogle Scholar
  10. Huber-Pestalozzi, G., 1938. Das Phytoplankton des Süßwassers. Systematik und Biologie. Die Binnengewässer, Bd XVI, 1. Teil, Allgemeiner Teil. Blaualgen. Bakterien. Pilze, E. Schweizerbartische Verlagsbuchhandlung, Stuttgart: 236 pp.Google Scholar
  11. Huber-Pestalozzi, G., 1941. Das Phytoplankton des Süßwassers: Chrysophyten, Farbulose Flagellaten, Heterokonten. E. Schweizerbartische Verlagsbuchhandlung, Stuttgart: 365 pp.Google Scholar
  12. Hutchinson, G. E., 1967. A treatise on limnology. Vol. 2: Introduction to lake biology and the limnoplankton. New York, John Wiley & Sons: 1115 pp.Google Scholar
  13. Kangur, A., 1991. Kalad. In Timm, H. (eds), State of Lake Verevi. Hydrobiological researches XVII. Tartu: pp. 114–119 [The fishes in Lake Verevi. In Estonian].Google Scholar
  14. Klausmeier, Ch. A. & E. Litchman, 2001. Algal games: The vertical distribution of phytoplankton in poorly mixed water columnsLimnology and Oceanography, 46: 1998–2007.Google Scholar
  15. Klein, G. & I. Chorus, 1991. Nutrient balances and phytoplankton dynamics in Schlachtensee during oligotrophication. Verhandlung Internationale Vereinigung für theoretische und angewande Limnologie 24: 873–878.Google Scholar
  16. Krienitz, K., P. Kasprzak & R. Koschel, 1996. Long-term study on the influence of eutrophication, restoration and biomanipulation on the structure and development of phytoplankton communities in Feldberger Haussee (Baltic Lake District), Germany. Hydrobiologia 330: 89–110.CrossRefGoogle Scholar
  17. Kufel, L. & K. Kalinowska, 1997. Metalimnetic gradients and the vertical distribution of phosphorus in a eutrophic lake. Archiv für Hydrobiologie 140: 309–320.Google Scholar
  18. Kõiv, T.& K. Kangro, 2005. Resource ratios and phytoplankton species composition in a strongly stratified lake. Hydrobiologia 547: 123–135.CrossRefGoogle Scholar
  19. Kübar, K., H. Agasild, T. Virro & I. Ott, 2005. Vertical distribution of zooplankton in a strongly stratified hypertrophic lake. Hydrobiologia 547: 151–162.CrossRefGoogle Scholar
  20. Kümmerlin, R. E., 1998. Taxonomical response of the phytoplankton community of Upper Lake Constance (Bodensee-Obersee) to eutrophication and re-oligotrophication. Archiv für Hydrobiologie Special Issues in Advanced Limnology 53: 109–117.Google Scholar
  21. Laugaste, R., 1991. Fütoplankton. In Timm, H. (eds), State of Lake Verevi. Hydrobiological Researches XVII. Tartu: pp. 69–89 [Phytoplankton. In Estonian, summary in English].Google Scholar
  22. Lee, R. E., 1999. Phycology. Cambridge University Press, UK, 613 pp.Google Scholar
  23. Legendre, P., & L. Legendre, 1998. Numerical Ecology. Elsevier Science B. V., The Netherlands: 853 pp.Google Scholar
  24. Lindholm, T., 1992. Ecological role of depth maxima of phytoplankton. Archiv für Hydrobiologie Beiheft, Ergebnisse der Limnologie 35: 33–45.Google Scholar
  25. Lindholm, T. & J. A. O. Meriluoto, 1991. Recurrent depth maxima of the hepatotoxic cyanobacterium Oscillatoria agardhii. Canadian Journal of Fisheries & Aquatic Sciences 48: 1629–1634.CrossRefGoogle Scholar
  26. Lindholm, T., K. Weppling & H. S. Jensen, 1985. Stratification and primary production in a small brackish lake studied by close-interval siphon sampling. Verhandlung Internationale Vereinigung für theoretische und angewande Limnologie 22: 2190–2194.Google Scholar
  27. Loopmann, A., 1984. Suuremate Eesti järvede morfomeetrilised andmed ja veevahetus. Tallinn: 150 pp. [Morphometrical data and water exchange of larger Estonian lakes. In Estonian].Google Scholar
  28. Mann, K. H., 1991. Organisms and Ecosystem. In Barnes, R. S. K. & K. H. Mann (eds.), Fundamentals of Aqatic Ecology. EdinburghBlackwell Science, London: 3–26.Google Scholar
  29. Meffert, M.-E., 1989. Planktic unsheated filaments (Cyanophyceae) with polar and central gas vacuoles 2. Biology, population dynamics and biotopes of Limnothrix redekei (van Goor) Meffert. Archiv für Hydrobiologie 116: 257–282.Google Scholar
  30. Miracle, M. R. & M. T. Alfonso, 1993. Rotifer vertical distributions in a meromictic basin of Lake Banyoles (Spain). Hydrobiologia 255–256: 371–380.Google Scholar
  31. Moed, J. R., H. L. Hoogveld & H. De Haan, 1988. A study of factors regulating the succession of cyanobacteria in Lake Tjeukemeer, The Netherlands. Verhandlung Internationale Vereinigung für theoretische und angewande Limnologie 23: 1894–1897.Google Scholar
  32. Moll, R. A. & E. F. Stoermer, 1982. A hypothesis relating trophic status and subsurface chlorophyll maxima of lakes. Archiv für Hydrobiologie 94: 425–440.Google Scholar
  33. Eesti järved, 1968. Tallinn, “Valgus”:532 pp. [Estonian lakes. In Estonian].Google Scholar
  34. Nicklisch, A., B. Roloff & A. Ratsch, 1991. Competition experiments with two planktic blue-green algae (Oscillatoriaceae). Verhandlung Internationale Vereinigung für theoretische und angewande Limnologie 24: 889–892.Google Scholar
  35. Nõges P. & Nõges T. 1998. Stratification of Estonian small lakes studied during hydrooptical expeditions in 1995–97. Proceedings of Estonian Academy of Sciences. Biology. Ecology 47: 268–281.Google Scholar
  36. Nõges, T. & K. Kangro, 2005. Primary production of phytoplankton in a strongly stratified temperate lake. Hydrobiologia 547: 105–122.Google Scholar
  37. Nõges, P., 2005. Water and nutrient mass balance of temperate partly meromictic Lake Verevi. Hydrobiologia 547: 21–31.Google Scholar
  38. Nygaard, G., 1949. Hydrobiological studies on some Danish ponds and lakes II. The quotient hypothesis on some new or little known phytoplankton organisms. Det Kongelige Danske Videnskabernes Selskab 7: 293 pp.Google Scholar
  39. Nygaard, G., 1977. Vertical and seasonal distribution of some motile freshwater plankton algae in relation to some environmental factors. Archiv für Hydrobiologie Supplements 51 Algological Studies 18: 67–76.Google Scholar
  40. Nygaard, K. & A. Tobiesen, 1993. Bacterivory in algae: A survival strategy during nutrient limitation. Limnology and Oceanography 38: 273–279.CrossRefGoogle Scholar
  41. Olli, K., 1996. Mass occurrences of cyanobacteria in Estonian waters. Phycologia 36(6th suppl): 156–159.Google Scholar
  42. Ott, I., 1987. Mnogoletnie izmenenija letnego fitoplanktona i ih svjazi s ekologičeskimi faktorami v Estonskih ozerah. Dissertation. Manuscript at Tartu University, 203 pp. [Longterm changes of summer phytoplankton in Estonian lakes and their relations with ecological factors. In Russian].Google Scholar
  43. Ott, I., T. Kõiv, P. Nõges, A. Kisand, A. Järvalt, & E. Kirt, 2005. General description of Lake Verevi, its ecological status, changes during the past eight decades and restoration problems. Hydrobiologia 547: 1–20.CrossRefGoogle Scholar
  44. Ott, I. & R. Laugaste, 1996. Fütoplanktoni koondindeks (FKI), üldistus Eesti järvede kohta. Eesti Keskkonnaministeeriumi infoleht 3: 7–8[The Phytoplankton Compound Quotient (PCQ), generalisation about Estonian small lakes. In Estonian].Google Scholar
  45. Ott, I., S. Lokk, A. Mäemets, & R. Laugaste. 1997. Plankton changes in Estonian small lakes in 1951–1993. Proceedings of Estonian Academy of Sciences. Biology. Ecology 46(1/2): 58–79.Google Scholar
  46. Pedrós-Alió, C. & R. Guerrero, 1993. Microbial ecology of Lake Cisó. In Jones, J.G. (eds), Plenum Press New York: 155–209.Google Scholar
  47. Reynolds, C. S., 1992. Dynamics, selection and composition of phytoplankton in relation to vertical structure in lakes. Archiv für Hydrobiologie Beiheft Ergebnisse der Limnologie 35: 13–31.Google Scholar
  48. Reynolds, C. S. & E. G. Bellingher, 1992. Patterns of abundance and dominance of the phytoplankton of Rostherne Mere, England: evidence from an 18-year data set. Aquatic Science 54: 10–36.CrossRefGoogle Scholar
  49. Riddols, A., 1985. Aspects of nitrogen fixation in Lough Neagh. 1. Acetylene reduction and the frequency of Aphanizomenon flos-aquae heterocysts. 2. Competition between Aphanizomenon flos-aquae, Oscillatoria redekei and Oscillatoria agardhii. Freshwater Biology 15: 299–306.Google Scholar
  50. Riikoja, H., 1930. Zur Morphometrie eineiger Seen im Estland. 15: 116–201.Google Scholar
  51. Rojo, C. & M. Alvarez-Cobelas, 1994. Population dynamics of Limnothrix redekei, Oscillatoria lancaeformis, Planktothrix agardhii. Hydrobiologia 275–276: 165–171.Google Scholar
  52. Rücker, J., C. Wiedner & P. Zippel, 1997. Factors controlling the dominance of Planktothrix agardhii and Limnothrix redekei in eutrophic shallow lakes. Hydrobiologia 342–343: 107–115.Google Scholar
  53. Scheffer, M., 1998. Ecology of shallow lakes, In M. B. Usher (ed.) Chapman & Hall, London, Weinheim, New York: 357 pp.Google Scholar
  54. Scheffer, M., S. Rinaldi, A. Gragnani, L. R. Mur & E. H. van Nes, 1997. On the dominance of filamentous cyanobacteria in shallow, turbid lake. Ecology 78: 272–282.Google Scholar
  55. Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in freshwater. Archiv für Hydrobiologie 106: 433–471.Google Scholar
  56. Stauffer, R. E., 1987. Vertical nutrient transport and its effects on epilimnetic phosphorus in four calcareous lakes. Hydrobiologia 154: 87–102.CrossRefGoogle Scholar
  57. Stewart, A. J. & R. G. Wetzel, 1986. Cryptophytes and other microflagellates as couplers in planktonic community dynamics. Archiv für Hydrobiologie 106: 1–19.Google Scholar
  58. Utermöhl, H., 1958. Zur Vervollkomnung der quantitativen Phytoplankton Methodik. Mitteilungen internationale Vereingung für theoretische und angewandte Limnologie 9: 1–38.Google Scholar
  59. Wetzel R. G., 1983. Limnology. Saunders College Publishing, Philadelphia, London, Toronto: 767 pp.Google Scholar
  60. Wetzel R. G. & Likens G. E., 1991. Limnological analyses. Springer-Verlag, New York, Inc: 391 pp.Google Scholar
  61. Zingel, P. & I. Ott, 2000. Vertical distribution of planktonic ciliates in strongly stratified temperate lake. Hydrobiologia 435: 19–26.CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Kersti Kangro
    • 1
  • Reet Laugaste
    • 1
  • Peeter Nõges
    • 1
  • Ingmar Ott
    • 1
  1. 1.Institute of Zoology and BotanyEstonian Agricultural UniversityRannu, Tartu CountyEstonia

Personalised recommendations