Advertisement

Optical properties and light climate in Lake Verevi

  • Anu Reinart
  • Helgi Arst
  • Donald C. Pierson
Chapter
  • 272 Downloads
Part of the Developments in Hydrobiology book series (DIHY, volume 182)

Abstract

The optical properties and light climate during the ice-free period in the highly stratified Lake Verevi (Estonia) have been studied together with other lakes in same region since 1994. The upper water layer above the thermocline belongs to class “moderate” by optical classification of Estonian lakes but can turn “turbid” (concentration of chlorophyll a up to 73 mg m−3 and total suspended matter up to 13.2 g m−3) during late summer blooms. In the blue part of the spectrum, light is mainly attenuated by dissolved organic matter and in red part notably scattering but also absorption by phytoplanktonic pigments effect the spectral distribution of underwater light. Consequently, the underwater light is of greenish-yellow color (550–650 nm). Rapid change in optical properties occurs with an increase of all optically active substances close to thermocline (2.5–6 m). Optical measurements are often hampered beneath this layer so that modeling of the depth distribution of the diffuse attenuation coefficient is an useful compliment to field measurements. Kd,PAR ranges from 0.8 to 2.9 m−1 in the surface layer, and model results suggest that it may be up to 5.8 m−1 in the optically dense layer. This forms a barrier for light penetration into the hypolimnion.

Key words

light climate optical properties stratified lake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arst, H., S. Mäekivi, T. Kutser, A. Reinart, A. Blanco-Sequeiros, J. Virta & P. Nõges, 1996. Optical investigations of Estonian and Finnish lakes. Lakes and Reservoirs: Research and Management 2: 187–198.Google Scholar
  2. Arst, H., S. Mäekivi, T. Lukk & A. Herlevi, 1997. Calculating irradiance penetration into water bodies from the measured beam attenuation coefficient. Limnology and Oceanography 42: 379–385.Google Scholar
  3. Arst, H., A. Erm, K. Kallaste, S. Mäekivi, A. Reinart, P. Nõges & T. Nõges, 1999. Investigation of Estonian and Finnish lakes by optical measurements in 1992–1997. Proc. Estonian Acad. Sci. Biol. Ecol. 48(1): 5–24.Google Scholar
  4. Arst, H., A. Erm, A. Reinart, L. Sipelgas & A. Herlevi, 2002. Calculating irradiance penetration into water bodies from the measured beam attenuation coefficient, II: Application of the improved model to different types of lakes. Nordic Hydrology 33: 227–240.Google Scholar
  5. Bowling, L. C. & P. A. Tyler, 1985. The underwater light-field of lakes with marked physiochemical and biotic diversity in the water column. Journal of Plankton Research 23: 69–77.Google Scholar
  6. Davies-Colley, R. J. & W. N. Vant, 1988. Estimates of optical properties of water from Secchi disk depths. Water Resources Bulletin 24: 1329–35.Google Scholar
  7. Dera, J., 1992. Marine Physics. Elsevier, Amsterdam 452 pp.Google Scholar
  8. ISO, 10260, 1992. (E), Water quality — Measurement of biochemical parameters — Spectrophotometric determination of chlorophyll-a concentration. (Geneva, Switzerland: ISO), 1–6.Google Scholar
  9. Kangro, K., R. Laugaste, P. Nõges & I. Ott, 2005. Long-term changes and seasonal development of phytoplankton in a strongly stratified, hypertrophic lake. Hydrobiologia 547:91–103.CrossRefGoogle Scholar
  10. Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystem. University Press, Cambridge 509 pp.Google Scholar
  11. Koenings, J. P. & J. A. Edmundson, 1991. Secchi disk and photometer estimates of light regimes in Alaskan lakes: Effects of yellow colour and turbidity. Limnology and Oceanography 36: 91–105.CrossRefGoogle Scholar
  12. Kõiv, T. & K. Kangro, 2005. Resource ratios and phytoplankton species composition in a strongly stratified lake. Hydrobiologia 547: 123–135.CrossRefGoogle Scholar
  13. Nõges, T. & I. Solovjova, 2005. The formation and dynamics of deep bacteriochlorophyll maximum in the temperate and partly meromictic Lake Verevi. Hydrobiologia 547: 73–81.Google Scholar
  14. Ott, I., T. Kõiv, P. Nõges, A. Kisand, A. Järvalt & E. Kirt, 2005a. General description of Lake Verevi, its ecological status, changes during the past eight decades and restoration problems. Hydrobiologia 547: 1–20.CrossRefGoogle Scholar
  15. Ott, I., A. Rakko, D. Sarik, P. Nõges & K. Ott, 2005b. Sedimentation rate of seston during the formation of temperature stratification after ice break-up in the partly meromictic Lake Verevi. Hydrobiologia 547: 51–61.Google Scholar
  16. Philips, E. J., F. J. Aldridge & P. Hansen, 1995. Patterns of water chemistry, physical and biological parameters in shallow subtropical lake (Lake Okeechobee, Florida, USA). Ergebnisse der Limnologie 45: 117–135.Google Scholar
  17. Pierson, D. C., H. Markensten & N. Strömbeck, 2002. Long and short term variations in sediment resuspension: the influence on light available to the phytoplankton community. Hydrobiologia. 494: 299–304.Google Scholar
  18. Pierson, D. C. & N. Strömbeck, 2000. A modeling approach to evaluate preliminary remote sensing algorithms: use of water quality data from Swedish great lakes. Geophysica 36: 177–202.Google Scholar
  19. Pierson, D. C. & N. Strömbeck, 2001. Estimation of radiance reflectance and the concentrations of optically active substances in Lake Mälaren, Sweden, based on direct and inverse solutions of a simple model. The Science of the Total Environment 268: 171–188.CrossRefPubMedGoogle Scholar
  20. Reinart, A., 2000. Light field characteristics in different types of Estonian and Finnish lakes, Ph.D. theses, Tartu University Press, Tartu, 195 pp.Google Scholar
  21. Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. University Press, Cambridge, 390 pp.Google Scholar
  22. Van Duin, E. H. S., G. Blom, F. J. Los, R. Maffione, R. Zimmerman, C. F. Cerco, M. Dortch & E. P. H. Best, 2001. Modeling underwater light climate in relation to sedimentation, resuspension, water quality and autotrophic growth. Hydrobiologia 444: 25–42.Google Scholar
  23. Vertucci, F. A. & G. E. Likens, 1989. Spectral reflectance and water quality of Andirondack mountain region lakes. Limnology and Oceanography 34: 1656–1672.CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Anu Reinart
    • 1
    • 2
  • Helgi Arst
    • 3
  • Donald C. Pierson
    • 2
  1. 1.Tartu ObservatoryTõravere, Tartu CountyEstonia
  2. 2.Department of LimnologyUppsalaSweden
  3. 3.Estonian Marine InstituteTartu UniversityTallinnEstonia

Personalised recommendations