Water and nutrient mass balance of the partly meromictic temperate Lake Verevi

  • Peeter Nõges
Part of the Developments in Hydrobiology book series (DIHY, volume 182)


Mass balances of total nitrogen and total phosphorus were calculated for Lake Verevi (area 0.126 km2, maximum depth 11 m, mean depth 3.6 m), a sharply stratified small lake located in South Estonia within the borders of the town Elva. The lake has up to 10 small inflows but only three of them are nearly permanent. Accidental overflows from near-by oxidation ponds during high floods have been the major source of the nutrient load of the lake in the past. L. Verevi receives a significant part of its inflow from groundwater, which is difficult to measure. In dry years the outflow is temporary. During summer the lake is sharply thermally and chemically stratified. The spring turnover is often incomplete even in homothermal conditions, thus giving the lake some meromictic features. The influx of nitrogen exceeded the outflux at any supposed proportion (20%, 50%, 80%) of surface runoff. The lake retained 45–90% of the nitrogen influx by sedimentation and/or by denitrification. The largest nitrogen losses with loss rates more than 10 kg N d−1 occurred in May and June. The calculated phosphorus retention rate became strongly negative during mixing periods. From June to November, phosphorus release from the sediment exceeded sedimentation by 205 kg in 1991 and by 79 kg in 1993. Earlier stagnation and absence of a full spring turnover in the 2000 has slowed down the recovery of the lake because less phosphorus is flushed out. However, the stronger stratification and significantly smaller phosphorus content in the epilimnion limits biological activity and as a result improves the water quality of the surface layer.

Key words

water balance nitrogen balance phosphorus balance stratification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlgren, I., F. Sörensson, T. Waara & K. Vrede, 1994. Nitrogen budgets in relation to microbial transformations in lakes. Ambio 23: 367–377.Google Scholar
  2. Andersen, J. M., 1974. Nitrogen and phosphorus budgets and the role of sediments in six shallow Danish lakes. Archiv für Hydrobiologie 74: 528–550.Google Scholar
  3. Blenckner, T., 2001. Climate related impacts on a lake. From physics to biology. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 674, 37 pp.Google Scholar
  4. Blenckner, T., A. Omstedt & M. Rummukainen, 2002. A Swedish case study of contemporary and possible future consequences of climate change on lake function. Aquatic Sciences 64: 171–184.CrossRefGoogle Scholar
  5. Boström, B., Jansson, M. & C. Forsberg, 1982. Phosphorus release from lake sediments. Archiv für Hydrobiologie Beiheft Ergebnisse der Limnologie 18: 5–59.Google Scholar
  6. Chen, R. L., D. R. Keeney, D. A. Graetz & A. J. Holding, 1972. Denitrification and nitrate reduction in Wisconsin lake sediments. Journal of Environmental Quality 1: 158–162.Google Scholar
  7. Dudel, G. & J.-G. Kohl, 1991. Contribution of dinitrogen fixation and denitrification to the N-budget of a shallow lake. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 24: 884–888.Google Scholar
  8. Eilers, J. M., G. E. Glass, K. E. Webster & J. A. Rogalla, 1983. Hydrologic control of lake susceptibility to acidification. Canadian Journal of Fisheries and Aquatic Sciences 40:1896–1904.Google Scholar
  9. Eloranta, P., 1992. Limnologian perusteet. Luentorunko, Helsinkin yliopisto, Helsinki, 190 pp.Google Scholar
  10. Golterman, H. L., 1975. Physiological limnology. An approach to the physiology of lake ecosystems. Elsevier, Amsterdam, Oxford, New York, 49 pp.Google Scholar
  11. Jensen, J. P., P. Kristensen & E. Jeppesen, 1990. Relationships between nitrogen loading and in-lake nitrogen concentrations in shallow Danish lakes. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 24: 201–204.Google Scholar
  12. Jensen, J. P., E. Jeppesen, P. Kristensen, P. B. Christensen & M. Søndergaard, 1992. Nitrogen loss and denitrification as studied in relation to reductions in nitrogen loading in a shallow, hypertrophic lake (Lake Søbygård, Denmark). Internationale Revue der gesamten Hydrobiologie 77: 29–42.CrossRefGoogle Scholar
  13. Jørgensen, S. E. & R. A. Vollenweider (eds), 1988. Principles of lake management. Guidelines of lake management. Vol. 1. ILEC, UNEP: 199 pp.Google Scholar
  14. Laugaste, R., 1994. Verevi järve seisund, biogeensete ainete päritolu ja tervistamise abinõud. In Järvekülg, A. (ed.)Eesti jõgede ja järvede seisund ning kaitse. Teaduste Akadeemia Kirjastus, Tallinn, 47–64 [The state, the origin of nutrients and the measures necessary for recovering Lake Verevi. In Estonian].Google Scholar
  15. Livingstone, D. M., 1997. An example of the simultaneous occurrence of climate-driven ‘sawtoth’ deep-water warming/ cooling episodes in several Swiss lakes. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 26: 822–826.Google Scholar
  16. Livingstone, D. M. & D. M. Imboden, 1996. The prediction of hypolimnetic oxygen profiles: a plea for a deductive approach. Canadian Journal of Fisheries and Aquatic Sciences 53: 924–932.CrossRefGoogle Scholar
  17. Loopmann, A., 1984. Suuremate Eesti järvede morfomeetrilised and med ja veevahetus. Tallinn, 150 lk. [Morphometrical data and water exchange of larger Estonian lakes. In Estonian].Google Scholar
  18. Löfgren, S., 1987. Phosphorus retention in sediments — implications for aerobic phosphorus release in shallow lakes. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science 100. 24 pp.Google Scholar
  19. Mäemets, A., 1991. Füüsilis-geograafiline iseloomustus. In Timm, T. (ed.). Verevi järve seisund, Tartu, 13–19 [Physical-geographical characterization. In Estonian].Google Scholar
  20. Mäemets, A. & K. Ennok, 1991. Valgla iseloom, sissevoolude vee keemiline koostis ja järve reostuskoormus. In Timm, T. (ed.) Verevi järve seisund, Tartu: 34–43 [Catchment features, chemical composition of water of inflows and pollution loading of the lake. In Estonian].Google Scholar
  21. Mäemets, A. & E. L. Rembel Ainsalu, 1991. Sissevoolud ja veevahetus. In Timm, T. (ed.) Verevi järve seisund, Tartu: 19–22 [Inflows and water exchange. In Estonian].Google Scholar
  22. Nõges, P. & A. Kisand, 1999. Forms and mobility of sediment phosphorus in shallow eutrophic Lake Võrtsjärv (Estonia). Internationale Revue der gesamten Hydrobiologie 84: 255–270.Google Scholar
  23. Nõges, T. & K. Kangro, 2005. Primary production of phytoplankton in a strongly stratified temperate lake. Hydrobiologia 547: 105–122.Google Scholar
  24. Ott, I., T. Kõiv, P. Nõges, A. Kisand, A. Järvalt & E. Kirt, 2005a. General description of partly meromictic hypertrophic Lake Verevi, its ecological status, changes during the past eight decades and restoration problems. Hydrobiologia 547: 1–20.Google Scholar
  25. Ott, I., A. Rakko, D. Sarik, P. Nõges & K. Ott, 2005b. Sedimentation rate of seston during the formation of temperature stratification after ice break-up in the partly meromictic Lake Verevi. Hydrobiologia 547: 51–61.CrossRefGoogle Scholar
  26. Pärn & Eipre, 1983. Klimaticheskie usloviya ozera. In Sokolov, A. A. (ed.)Chudsko-Pskovkoe ozero. Gidrometeoizdat, Leningrad: 27–41 [Climatic conditions of the lake. In Russian].Google Scholar
  27. Riikoja, H., 1940. Zur Kenntnis einiger Seen Ost-Eestis, insbesondere ihrer Wasserchemie. Publications of the Limnological Laboratory of the Natural Resources Research Institute of Estonia 2: 1–167.Google Scholar
  28. Tõnno, I., K. Ott & T. Nõges, 2005. Nitrogen dynamics in steeply stratified temperate Lake Verevi, Estonia. Hydrobiologia 547: 63–71.CrossRefGoogle Scholar
  29. Vanek, V., 1987. The interactions between lake and groundwater and their ecological significance. Stygologia 3: 1–23.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Peeter Nõges
    • 1
    • 2
  1. 1.Institute of Zoology and BotanyEstonian Agricultural UniversityRannuEstonia
  2. 2.EC Joint Research CentreInstitute for Environment and SustainabilityIspra (VA)Italy

Personalised recommendations