Advertisement

Vertical and seasonal dynamics of planktonic ciliates in a strongly stratified hypertrophic lake

  • Priit Zingel
Chapter
  • 274 Downloads
Part of the Developments in Hydrobiology book series (DIHY, volume 182)

Abstract

Seasonal population dynamics and the vertical distribution of planktonic ciliates in a hypertrophic and strongly stratified temperate lake were studied from April to October in 2000 and from April to June in 2001. In the epi- and metalimnion the ciliate abundance peaked in spring and late summer, reaching maximum values in the metalimnion (86 cells ml−1) on 7th August 2000. In the epilimnion, the highest biomass content (414 µg C l−1) was observed on 8th May 2000. In the hypolimnion only a late summer peak occurred and the ciliate numbers were always lower than in the epi- and metalimnion. Five groups dominated the community of ciliates: Oligotrichida, Gymnostomatea, Prostomatida, Hymenostomata and Peritrichia, and the community composition varied greatly with depth. In the epilimnion the ciliate numbers were dominated by oligotrichs but small algivorous prostomatids, peritrichs and gymnostomes were also numerous. In the metalimnion these groups were gradually replaced by scuticociliates and mixotrophic Coleps spp. In the hypolimnion scuticociliates and species known as benthic migrants dominated. In the epilimnion and upper metalimnion in spring large herbivores and in summer small bacterivores were more numerous.

Key words

ciliates protozooplankton vertical distribution seasonal dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reill & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263.Google Scholar
  2. Beaver, J. R. & T. L. Crisman, 1982. The trophic response of ciliated protozoans in freshwater lakes. Limnology and Oceanography 27: 246–253.Google Scholar
  3. Berk, S. G., D. C. Brownlee, D. R. Heinle, H. J. Kling & R. R. Colwell, 1977. Ciliates as a food source for marine planktonic copepods. Microbial Ecology 4: 27–40.Google Scholar
  4. Carrias, J. F., C. Amblard & G. Bourdier, 1998. Seasonal dynamics and vertical distribution of planktonic ciliates and their relationships to microbial food resources in the oligomesotrophic Lake Pavin. Archiv Für Hydrobiologie 143: 227–255.Google Scholar
  5. Carrick, H. J. & G. L. Fahnenstiel, 1990. Planktonic protozoa in Lakes Huron and Michigan: seasonal abundance and composition of ciliates and dinoflagellates. Journal of Great Lakes Research 16: 319–329.CrossRefGoogle Scholar
  6. Dolan, J. R. & D.W. Coats, 1991. Preliminary prey digestion in a predacious estuarine ciliate and the use of digestion data to estimate digestion. Limnology and Oceanography 36: 558–565.CrossRefGoogle Scholar
  7. Esteve, I., J. M. N. Gaju, H. McKhann & L. Margulis, 1988. Green endosymbiont of Coleps from Lake Cisó identified as Chlorella vulgaris. Symbiosis 3: 197–210.Google Scholar
  8. Fenchel, T., 1987. Ecology of Protozoa. The Biology of Freeliving Fagotrophic Protists. Springer-Verlag, Berlin, 197 pp.Google Scholar
  9. Finlay, B. J., 1985. Nitrate respiration by protozoa (Loxodes spp.) in the hypolimnetic nitrate maximum of productive freshwater pond. Freshwater Biology 15: 333–346.Google Scholar
  10. Finlay, B. J., T. Fenchel & S. Garfdiner, 1986. Oxygen perception and oxygen toxicity in the freshwater ciliated protozoan Loxodes. Journal of Protozoology 33: 157–165.Google Scholar
  11. Foissner, W. & H. Berger, 1996. A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshwater Biology 35: 375–482.Google Scholar
  12. Gifford, D. J., 1991. The protozoan-metazoan trophic link in pelagic ecosystems. Journal of Protozoology 38: 81–86.Google Scholar
  13. Gonzales, J. M., E. B. Sherr & B. F. Sherr, 1990. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Applied and Environmental Microbiology 56: 583–589.Google Scholar
  14. Guerrero, R., C. Pedros-Alio, T. M. Schmidt, & J. Mas, 1985. Phototrophic sulphur bacteria in two Spanish lakes: vertical distribution and limiting factors. Limnology and Oceanography 30: 807–819.Google Scholar
  15. Heinbokel, J. F. & J. R. Beers, 1979. Studies on the functional role of tintinnids in the Southern California Bight. 3. Graizing impact of natural assemblages. Marine Biology 52: 23–32.CrossRefGoogle Scholar
  16. Kahl, A., 1930. Urtiere oder Protozoa I: Wimpertiere oder Ciliata (Infusoria) 1. Allgemeiner Teil und Prostomata. Tierwelt Deutschlands 18: 1–180.Google Scholar
  17. Kahl, A., 1931. Urtiere oder Protozoa I. Wimpertiere oder Ciliata (Infusoria) 2. Holotricha auber den im 1. Teil behandelten Prostomata. Tierwelt Deutschlands. 21: 181–398.Google Scholar
  18. Kahl, A., 1932. Urtiere oder Protozoa I: Wimpertiere oder Ciliata (Infusoria) 3. Spirotricha. Tierwelt Deutschlands 25: 399–650.Google Scholar
  19. Kahl, A., 1935. Urtiere oder Protozoa I: Wimpertiere oder Ciliata (Infusoria) 4. Peritricha und Chonotricha. Tierwelt Deutschlands 30: 651–886.Google Scholar
  20. Kisand, V. & P. Zingel, 2000. Dominance of ciliate grazing on bacteria during spring in a shallow eutrophic lake. Aquatic Microbial Ecology 22(2): 135–142.Google Scholar
  21. Kübar, K., H. Agasild, T. Virro & I. Ott, 2005. Vertical distribution of zooplankton in a strongly stratified hypertrophic lake. Hydrobiologia 547: 151–162.CrossRefGoogle Scholar
  22. Laybourn-Parry, J., J. Olver, A. Rogerson & P. L. Duvergé, 1990. The temporal and spatial patterns of protozooplankton abundance in a eutrophic temperate lake. Hydrobiologia 203: 99–110.Google Scholar
  23. Maly, E. J., 1975. Interactions among the predatory rotifer Asplancha and two prey Paramecium and Euglena. Ecology 56: 346–358.Google Scholar
  24. Müller, H., A. Schöne, R. M. Pinto-Coelho, A. Schweizer & T. Weisse, 1991. Seasonal succession of ciliates in Lake Constance. Microbial Ecology 21: 119–138.Google Scholar
  25. Ott, I., T. Kõiv, P. Nõges, A. Kisand, A. Järvalt & E. Kirt, 2005. General description of partly meromictic hypertrophic Lake Verevi, its ecological status, changes during the past eight decades and restoration problems. Hydrobiologia 547: 1–20.CrossRefGoogle Scholar
  26. Pace, M. L., 1982. Planktonic ciliates: their distribution, abundance and relationship to microbial resources in a monomictic lake. Canadian Journal of Fisheries & Aquatic Sciences 39: 106–116.CrossRefGoogle Scholar
  27. Patterson, D. J. & S. Hedley, 1992. Free-living Freshwater Protozoa. A Color Guide. Wolfe Publishing Ltd., England, 223 pp.Google Scholar
  28. Porter, K. G., M. L. Pace & J. F. Battey, 1979. Ciliate protozoans as links in freshwater planctonic food chains. Nature 277: 563–565.Google Scholar
  29. Putt, M. & D. K. Stoecker, 1989. An experimentally determined carbon:volume ratio for marine ‘oligotrichous’ ciliates from estuarine and coastal water Js. Limnology and Oceanography 34: 1097–1103.CrossRefGoogle Scholar
  30. Sherr, E. B. & B. F. Sherr, 1984. Role of heterotrophic protozoa in carbon and energy flow in aquatic ecosystems. In Klug, M. J. & C. A. Reddy (eds), Current Perspectives in Microbial Ecology. American Society for Microbiology, Washington, 412–423.Google Scholar
  31. Sorokin, Y. I. & E. B. Paveljeva, 1972. On the quantitative characteristics of the pelagic ecosytem of Dalnee Lake (Kamchatka). Hydrobiologia 40: 519–552.CrossRefGoogle Scholar
  32. Steenbergen, C. L. M., J. P. Sweerts & T. E. Cappenberg, 1993. Microbial biogeochemical activities in lakes: stratification and eutrophication. 4. Aquatic Microbiology. An Ecological Approach. Blackwell Science Publication, 69-101.Google Scholar
  33. Stoecker, D. K. & J. M. Capuzzo, 1990. Predation on protozoa: its importans to zooplankton. Journal of Plankton Research 12: 891–908.Google Scholar
  34. Šimek, K. & V. Straškrabová, 1992. Bacterioplankton production and protozoan bacterivory in a mesotrophic reservoir. Journal of Plankton Research 14: 773–787.Google Scholar
  35. Šimek, K., J. Bobkova, M. Macek, J. Nemoda & R. Psenner, 1995. Ciliates grazing on picoplankton in a eutrophic reservoir during summer phytoplankton maximum: a study at the species and community level. Limnology and Oceanography 40: 1077–1090.Google Scholar
  36. Tammert, H., V. Kisand & T. Nõges, 2005. Bacterioplankton abundance and activity in a small hypertrophic stratified lake. Hydrobiologia 547: 83–90.CrossRefGoogle Scholar
  37. Utermöhl, H., 1958. Zur Vervollkommung der quantitativen Phytoplankton Methodik. Mitteilungen Internationale Vereiningung für Theoretische und Angewandte. Limnologie 9: 1–38.Google Scholar
  38. Zingel, P., 1999. Pelagic ciliated protozoa in a shallow eutrophic lake: community structure and seasonal dynamics. Archiv für Hydrobiologie 146: 495–511.Google Scholar
  39. Zingel, P. & I. Ott, 2000. Vertical distribution of planktonic ciliates in strongly stratified temperate lakes. Hydrobiologia 435: 19–26.CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Priit Zingel
    • 1
    • 2
  1. 1.Centre for Limnology, Institute of Agricultural and Environmental SciencesEstonian Agricultural UniversityRannu, TartumaaEstonia
  2. 2.Institute of Veterinary Medicine and Animal SciencesEstonian Agricultural UniversityTartuEstonia

Personalised recommendations