Advertisement

Vertical distribution of zooplankton in a strongly stratified hypertrophic lake

  • Kaidi Kübar
  • Helen Agasild
  • Taavi Virro
  • Ingmar Ott
Chapter
  • 280 Downloads
Part of the Developments in Hydrobiology book series (DIHY, volume 182)

Abstract

The vertical and temporal distribution of metazooplankton in the small hypertrophic, strongly stratified, temperate Lake Verevi (Estonia) was studied during 1998–2001. The zooplankton of Lake Verevi is characteristic of hypertrophic lakes, with a small number of dominant species, rotifers being the main ones, and juveniles prevailing among copepods. In 1999–2001, the average abundance of metazooplankton in the lake was 1570 × 103 ind m−3; in the epilimnion 2320 × 103 ind m−3, in the metalimnion 2178 × 103 ind m−3, and in the hypolimnion 237 × 103 ind m−3. The average biomass of metazooplankton was 1.75 g m−3; in the epi-, meta- and hypolimnion, accordingly, 2.16, 2.85 and 0.26 g m−3. The highest abundances — 19,136 × 103 ind m−3 and 12,008 × 103 ind m−3 — were registered in the lower half of the metalimnion in 24 May and 5 June 2001, respectively. Rotifer Keratella cochlearis f. typica (Gosse, 1851) was the dominating species in abundance. In biomass, Asplanchna priodonta Gosse, 1850, among the rotifers, and Eudiaptomus graciloides (Lilljeborg, 1888), among the copepods, dominated. According to the data from 2000’2001, the abundance and biomass of both copepods and rotifers were highest in spring. Zooplankton was scarce in the hypolimnion, and no peaks were observed there. During the summers of 1998 and 1999, when thermal stratification was particularly strong, zooplankton was the most abundant in the upper half of the metalimnion, and a distinct peak of biomass occurred in the second fourth of the metalimnion. Probably, the main factors affecting the vertical distribution of zooplankton in L. Verevi are fish, Chaoborus larvae, and chemocline, while food, like phytoplankton, composition and abundance may affect more the seasonal development of zooplankton.

Key words

zooplankton vertical distribution seasonal dynamics stratification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andronikova, I. N., 1989. Strukturno-funktsionalnaya organizatsiya zooplanktona ozernykh ekosistem raznykh troficheskikh tipov. Theses doc. Leningrad, 39 pp. [Structural and Functional Arrangement of Zooplankton in Lake Ecosystems of Various Trophic Types. In Russian].Google Scholar
  2. Armengol, X., A. Esparcia & M. R. Miracle, 1998. Rotifer vertical distribution in a strongly stratified lake: a multivariate analysis. Hydrobiologia 387/388: 161–170.Google Scholar
  3. Armengol-Diaz, J., A. Esparcia, E. Vicente & M. R. Miracle, 1993. Vertical distribution of planktonic rotifers in a karstic meromictic lake. Hydrobiologia 255/256: 381–388.Google Scholar
  4. Arvola, L., K. Salonen, R. I. Jones, A. Heinänen & I. Bergström, 1987. A three day study of the diel behaviour of plankton in a highly humic and steeply stratified lake. Archiv für Hydrobiologie 109: 89–106.Google Scholar
  5. Balushkina, E. V. & G. G. Winberg, 1979. Zavisimost mezhdu massoi I dlinoi tela u planktonnykh zivotnykh Obshchiye osnovy izucheniya vodnykh ekosistem. In Winberg, G. G. (ed.), Obshchie osnovy izucheniya vodnykh ekosistem. Nauka. Leningrad: 169–172 [Relation Between Body Mass and Length in Planktonic Animals. In Russian].Google Scholar
  6. Berzins, B. & B. Pejler, 1989. Rotifer occurrence in relation to temperature. Hydrobiologia 175: 223–231.CrossRefGoogle Scholar
  7. Bosselmann, S., 1979. Population dynamics of Keratella cochlearis in Lake Esrom. Archiv für Hydrobiologie 87: 152–165.Google Scholar
  8. Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24(4): 419–456.Google Scholar
  9. Bulgakov, N. G. & A. P. Levich, 1999. The nitrogen:phosphorus ratio as a factor regulating phytoplankton community structure. Archiv für Hydrobiologie 146(1): 3–22.Google Scholar
  10. Bürgi, H. R., C. Heller, S. Gaebel, N. Mookerji & J. V. Ward, 1999. Strength coupling between phyto and zooplankton in Lake Lucerne (Switzerland) during phosphorus abatement subsequent to a weak eutrophication. Journal of Plankton Research 21: 485–507.Google Scholar
  11. Carpenter, S. R. & J. F. Kitchell (eds.) 1993. The Trophic Cascade in Lakes. University Press, Cambridge.Google Scholar
  12. Cordova, S. E., J. Giffin & K. L. Kirk, 2001. Food limitation of planktonic rotifers: field experiments in two mountain ponds. Freshwater Biology 46: 1519–1527.CrossRefGoogle Scholar
  13. Fradkin, S. C., 1995. Effects on interference and exploitative competition from large-bodied cladocerans on rotifer community structure. Hydrobiologia 313/314: 387–393.CrossRefGoogle Scholar
  14. Godeanu, S. P., 1978. Specificity of the zooplankton in several lakes from northern Germany with different degree of eutrophication. Verhandlungen. Internationale Vereinigung für Theoretische und Angewandte Limnologie 20: 963–968.Google Scholar
  15. Haberman, J., 1998. Zooplankton of Lake Võrtsjärv. Limnologica 28: 49–65.Google Scholar
  16. Herzig, A., 1994. Predator-prey relationships within the pelagic community of Neusiedler See. Hydrobiologia 275/276: 81–96.CrossRefGoogle Scholar
  17. Hofmann, W., 1977. The influence of abiotic environmental factors of population dynamics in planktonic rotifers. Archiv für Hydrobiologie. Beiheft Ergebnisse der Limnologie 8: 77–83.Google Scholar
  18. Järvalt, A., T. Krause & A. Palm, 2005. Diel migration and spatial distribution of fish in a small stratified lake. Hydrobiologia 547: 197–203.CrossRefGoogle Scholar
  19. Jeppesen, E., E. A. Madsen, J. P. Jensen & N. J. Anderson, 1996. Reconstructing the past density of planktivorous fish and trophic structure from sedimentary zooplankton fossils: a surface sediment calibration data set from shallow lakes. Freshwater Biology 36: 115–127.CrossRefGoogle Scholar
  20. Kangro, K., R. Laugaste, P. Nõges & I. Ott, 2005. Long-term changes and seasonal development of phytoplankton in a strongly stratified, hypertrophic lake. Hydrobiologia 547: 91–103.CrossRefGoogle Scholar
  21. Kira, T., 1993. Major environmental problems in world lakes. In De Bernardi R., R. Pagnotta & A. Pugnetti (eds), Strategies for Lake Ecosystems Beyond 2000. Memorie dell’Istituto Italiano di Idrobiologia 52: 1–7.Google Scholar
  22. Kirk, K. L., 2002. Competition in variable environments: experiments with planktonic rotifers. Freshwater Biology 47: 1089–1096.CrossRefGoogle Scholar
  23. Kizito, Y. S. & A. Nauwerck, 1995. Temporal and vertical distribution of planktonic rotifers in a meromictic crater lake, Lake Nyahirya (Western Uganda). Hydrobiologia 313/314: 303–312.CrossRefGoogle Scholar
  24. Kübar, K., 1994. Arbi ja Verevi järve zooplankton. Diploma paper. Manuscript at the Institute of Zoology and Hydrobiology of the University of Tartu, 81 pp. [Zooplankton of Lake Arbi and Lake Verevi. In Estonian, English summary].Google Scholar
  25. Lammens, E. H. R. R., 1990. The relation of biotic and abiotic interactions to eutrophication in Tjeukemeer, The Netherlands. Hydrobiologia 191: 29–37.CrossRefGoogle Scholar
  26. Lampert, W., 1992. Zooplankton vertical migrations: implications for phytoplankton-zooplankton interactions. Archiv für Hydrobiologie. Beiheft Ergebnisse der Limnologie 35: 69–78.Google Scholar
  27. Lampert, W., 1997. Zooplankton research: the contribution of limnology to general ecological paradigms. Aquatic Ecology 31: 19–27.CrossRefGoogle Scholar
  28. Leibold, M. A., 1990. Resources and predators can affect the vertical distributions of zooplankton. Limnology and Oceanography 35(4): 938–944.Google Scholar
  29. Liljendahl-Nurminen, A., J. Horppila, P. Eloranta, T. Malinen & L. Uusitalo, 2002. The seasonal dynamics and distribution of Chaoborus flavicans larvae in adjacent lake basins of different morphometry and degree of eutrophication. Freshwater Biology 47: 1283–1295.CrossRefGoogle Scholar
  30. Miracle, M. R., 1977. Migration, patchiness, and distribution in time and space of planktonic rotifers. Archiv für Hydrobiologie Beiheft Ergebnisse der Limnologie 8: 19–37.Google Scholar
  31. Miracle, M. R. & X. Armengol-Diaz, 1995. Population dynamics of oxiclinal species in lake Arcas-2 (Spain). Hydrobiologia 313/314: 291–301.CrossRefGoogle Scholar
  32. Nicholls, K. H. & C. Tudorancea, 2001. Species-level and community-level data analyses reveal spatial differences and temporal change in the crustacean zooplankton of a large Canadian lake (Lake Simcoe, Ontario). Journal of Limnology 60(2): 155–170.Google Scholar
  33. Nõges, T. & K. Kangro, 2005. Primary production of phytoplankton in a strongly stratified temperate lake. Hydrobiologia 547: 105–122.Google Scholar
  34. Nõges, P. & T. Nõges, 1998. Stratification of Estonian lakes studied during hydrooptical expeditions in 1995–97. Proceedings of the Estonian Academy of Sciences. Biology. Ecology 47: 268–281.Google Scholar
  35. Olt, K., 2001. Zooplanktoni vertikaalne jaotus Verevi järves ja Nohipalu Valgjärves suvise stratifikatsiooni tingimustes. Diploma paper. Manuscript at the Institute of Zoology and Hydrobiology of the University of Tartu, 59 pp. [Vertical Distribution of Zooplankton in Lake Verevi and Lake Nohipalu Valgjärv in Conditions of Summer Stratification. In Estonian, English summary].Google Scholar
  36. Ott, I., 1996. Relationship between organic matter and summer phytoplankton species composition. Eutrophication in planktonic food web dynamics and elemental cycling. International PELAG symposium, p. 54.Google Scholar
  37. Ott, I., T. Kõiv, P. Nõges, A. Kisand, A. Järvalt & E. Kirt, 2005a. General description of partly meromictic hypertrophic Lake Verevi, its ecological status, changes during the past eight decades and restoration problems. Hydrobiologia 547: 1–20.CrossRefGoogle Scholar
  38. Ott, I., R. Laugaste, S. Lokk & A. Mäemets, 1997. Plankton changes in Estonian small lakes in 1951–1993. Proceedings of the Estonian Academy of Sciences. Biology. Ecology 46(1/2): 58–79.Google Scholar
  39. Ott, I., A. Rakko, D. Sarik, P. Nõges & K. Ott, 2005b. Sedimentation rate of seston during the formation of temperature stratification after ice break-up in the partly meromictic Lake Verevi. Hydrobiologia 547: 51–61.Google Scholar
  40. Ponyi, J. E. & N. P. Zankai, 1982. Population dynamics, biomass and biomass production of Eudiaptomus gracilis (G. O. SARS) in two water areas of different trophic state of L. Balaton (Hungary). Acta Hydrochimica et Hydrobiologica 10: 597–610.Google Scholar
  41. Rothhaupt, K. O., 1990. Population growth rates of two closely related rotifer species: effects of food quality, particle size, and nutritional quality. Freshwater Biology 23: 561–570.Google Scholar
  42. Ruttner-Kolisko, A., 1977a. Comparison of various sampling techniques, and results of repeated sampling of planktonic rotifers. Archiv für Hydrobiologie. Beiheft Ergebnisse der Limnologie 8: 13–18.Google Scholar
  43. Ruttner-Kolisko, A., 1977b. Suggestions for biomass calculation of planktonic rotifers. Archiv für Hydrobiologie. Beiheft Ergebnisse der Limnologie 8: 71–76.Google Scholar
  44. Sommer, U., 1989. Toward a Darwinian ecology of plankton. In Sommer, U. (ed.) Plankton Ecology Succession in Plankton Communities. Springer Verlag, New York, Berlin, Heidelberg: 1–8.Google Scholar
  45. Stransfield, J. H., M. R. Perrow, L. D. Tench, A. J. D. Jowitt & A. A. L. Taylor, 1997. Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure. Hydrobiologia 342/343: 229–240.Google Scholar
  46. Studenikina, E. I. & M. M. Cherepakhina, 1969. Srednii ves osnovnykh form zooplanktona Azovskogo morya. Gidrobiologicheskii Zhurnal 5: 89–91 [Mean Weight of Basic Zooplankton Forms of the Azov Sea. In Russian].Google Scholar
  47. Tilman, D., 1977. Resource competition between planktonic algae: an experimental and theoretical approach. Ecology 58: 338–348.Google Scholar
  48. Tilman, D., 1982. Resource Competition and Community Structure. Princeton Univ. Press, Princeton, N.J.Google Scholar
  49. Timm, M. & A. Mäemets, 1991. Zooplankton. In Timm, H. (ed.), Verevi järve seisund. [State of Lake Verevi]. Estonian Academy of Sciences, Institute of Zooloogy and Botany, Tartu: 91–94 [Zooplankton. In Estonian].Google Scholar
  50. Van Donk, E., M. P. Grimm, R. D. Gulati, P. G. M. Heuts, W. A. de Kloet & L. Van Liere, 1990. First attempt to apply whole-lake food-web manipulation on a large scale in The Netherlands. Hydrobiologia 200/201: 291–301.Google Scholar
  51. Vanni, M. J. & J. Temte, 1990. Seasonal patterns of grazing and nutrient limitation of phytoplankton in a eutrophic lake. Limnology and Oceanography 35: 697–709.CrossRefGoogle Scholar
  52. Viitasalo, M., 1994. Seasonal succession and long-term changes of mesozooplankton in the Northern Baltic Sea. Finnish Marine Research 263: 3–39.Google Scholar
  53. Virro, T., 1989. Sravnenie metodov sbora planktonnykh kolovratok (Rotatoria) na primere Chudskogo ozera. Proceedings of the Academy of Sciences of the Estonian SSR. Biology 38: 119–122 [The Comparison of Sampling Methods of Planktonic Rotifers (Rotatoria) on the Example of Lake Peipsi. In Russian].Google Scholar
  54. Virro, T., 1996. Taxonomic composition of rotifers in Lake Peipsi. Hydrobiologia 338: 125–132.CrossRefGoogle Scholar
  55. Wetzel, R. G., 1983. Limnology (2nd ed.). Saunders College Publishing, Philadelphia.Google Scholar
  56. Williamson, C. E., R. W. Sanders, R. E. Moeller & P. L. Stutzman, 1996. Utilization of subsurface food resources for zooplankton reproduction: Implications for diel vertical migration theory. Limnology and Oceanography 41(2): 224–233.CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Kaidi Kübar
    • 1
    • 2
  • Helen Agasild
    • 1
  • Taavi Virro
    • 2
  • Ingmar Ott
    • 1
  1. 1.Institute of Zoology and BotanyEstonian Agricultural UniversityRannu, Tartu CountyEstonia
  2. 2.Institute of Zoology and HydrobiologyUniversity of TartuTartuEstonia

Personalised recommendations