Advertisement

The composition and density of epiphyton on some macrophyte species in the partly meromictic Lake Verevi

  • Reet Laugaste
  • Markku Reunanen
Chapter
Part of the Developments in Hydrobiology book series (DIHY, volume 182)

Abstract

The epiphyton on 22 macrophyte species was studied in the hypertrophic stratified Lake Verevi mainly in the midsummer of 2000 and 2001. Some material from 1998 and 1999 was used as well. Chlorophyll a (Chl a) level was high: 330–360 µg g dw−1 on emergent plants, and an average of 117–200 µg on floating-leaved plants and 820–920 µg g dw−1 on submerged plants. Biomass was 15–23, 5–10 and 35–53 mg g dw−1, respectively. The richest in epiphyton were submerged plants with densely growing and fine branchlets such as Ranunculus, Ceratophyllum, Myriophyllum, Utricularia, Potamogeton pectinatus L. and P. friesii Rupr. The share of Chl a in biomass was higher in 2001 (2.3%) than in 2000 (1.7%), which can be associated with lower irradiance in summer 2001. Filiform chlorophytes were dominating on most plants; 60% of biomass on submerged, 69% on emergent and 80% on floating-leaved plants; in some cases, the share of filamentous species was 95%. Diatoms formed 29, 12 and 7%, cyanobacteria 8, 16 and 10% of the same ecotopes, respectively. As a rule, the epiphyton was quite sparse on large Potamogeton leaves. Cyanobacteria were more abundant on large Potamogeton and Nuphar leaves, Elodea, on stems of P. natans L., Nuphar and on some emergent plants with a smooth and soft stem surface, as Butomus and Typha. Diatoms played the most important role on some Potamogeton species and in single samples of Ceratophyllum and Ranunculus. The morphology of plant species appears to be the main factor of epiphyton richness in L. Verevi.

Key words

epiphyton chlorophyll a biomass algal groups on different host plants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blindow, I., 1987. The composition and density of epiphyton on several species of submerged macrophytes — the neutral substrate hypothesis tested. Aquatic Botany 29: 157–168.CrossRefGoogle Scholar
  2. Burkholder, J. M. & R. G. Wetzel, 1989. Epiphytic microalgae on natural substrata in a hardwater lake: seasonal dynamics of community structure, biomass and ATP content. Archiv für Hydrobiologie 83: 1–56.Google Scholar
  3. Burkholder, J. M. & R. G. Wetzel, 1990. Epiphytic alkaline phosphatase on natural and artificial plants in an oligotrophic lake: re-evaluation of the role of macrophytes as a phosphorus source for epiphytes. Limnology and Oceanography 35: 736–746.CrossRefGoogle Scholar
  4. Carrick, H. J. & A. D. Steinman, 2001. Variation in periphyton biomass and species composition in Lake Okeechobee, Florida (USA): distribution of algal guilds along environmental gradients. Archiv für Hydrobiologie 152: 411–438.Google Scholar
  5. Cattaneo, A., 1987. Periphyton in lakes of different trophy. Canadian Journal of Fisheries and Aquatic Sciences 44: 296–303.Google Scholar
  6. Cattaneo, A., G. Galanti, S. Gentinetta & S. Romo, 1998. Epiphytic algae and microinvertebrates on submerged and floating-leaved macrophytes in an Italian lake. Freshwater Biology 39: 725–740.CrossRefGoogle Scholar
  7. Gross, E. M., D. Erhard & E. Leu 2002. Allelopathic activity of submersed macrophytes. Intern. Conference on Limnology of Shallow Lakes. Balatonfüred, Hungary. Abstracts, p. 70.Google Scholar
  8. Guidelines for the Baltic Monitoring Programme for the Third Stage 1984. The Baltic Marine Biologists. Publ. 1, 2nd edn.Google Scholar
  9. Hart, E. A. & J. R. Lovvorn, 2000. Vegetation dynamics and primary production in saline, lacustrine wetlands of a Rocky Mountain basin. Aquatic Botany 66: 21–39.CrossRefGoogle Scholar
  10. Havens, K. E., T. L. East, R. H. Meeker, W. P. Davis & A. D. Steinman, 1996. Phytoplankton and periphyton responses in situ experimental nutrient enrichment in a shallow subtropical lake. Journal of Plankton Research 18: 551–566.Google Scholar
  11. Hawes, I. & A. M. Schwarz, 1996. Epiphytes from a deep-water characean meadow in an oligotrophic New Zealand lake: species composition, biomass and photosynthesis. Freshwater Biology 36: 297–314.CrossRefGoogle Scholar
  12. Hepinstall, J. A. & R. L. Fuller, 1994. Periphyton reactions to different light and nutrient levels and the response of bacteria to these manipulations. Archiv für Hydrobiologie 131: 161–173.Google Scholar
  13. Hickman, M. & D. M. Clarer, 1973. Methods for measuring the primary productivity and standing crops of an epiphyte algal community attached to Scirpus validus Vahl. Internationale Revue der gesamten Hydrobiologie 58: 893–901.CrossRefGoogle Scholar
  14. Iványi, E., D. Erhard, E. M. Gross, 2002. Allelopathic activity of Ceratophyllum demersum and Najas marina. Intern. Conference on Limnology of Shallow Lakes. Balatonfüred, Hungary. Abstracts, 88 p.Google Scholar
  15. Jeffrey, S. W. & G. F. Humphrey, 1975. New spectrophotometric equations for determining chlorophylls a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen (BPP) 167: 191–194.Google Scholar
  16. Jernakoff, P. & J. Nielsen, 1997. The relative importance of amphipod and gastropod grazers in Posidonia sinuosa meadows. Aquatic Botany 56: 183–202.CrossRefGoogle Scholar
  17. Kairesalo, T., 1984. The seasonal succession of epiphytic communities within an Equisetum fluviatile L. stand in Lake Pääjärvi, Southern Finland. Internationale Revue der gesamten Hydrobiologie 4: 475–505.Google Scholar
  18. Kairesalo, T., A. Uusi-Rauva, 1983. Phosphorus release by an emergent macrophyte: significance to epiphyton. Proc. Int. Symp. Aquat. Macrophytes, Nijmegen, 18–23 September, 1983, pp. 101–110.Google Scholar
  19. Kassim, T. I & H. A. Al-Saadi, 1995. Seasonal variation of epiphytic algae in a marsh area (southern Iraq). Acta Hydrobiologica 37: 153–161.Google Scholar
  20. Kuz’ko, O. A., 2000a. Pervichnaya produktsiya epifitnykh gruppirovok vodoroslej v kanale Dnepr-Donbass. Vth All-Russian Conference on Aquatic Plants “Hydrobotany 2000”. Abstracts. Borok: 46–47 [Primary production of algal epiphyton groups in Dnepr-Donbass Channel (in Russian)].Google Scholar
  21. Kuz’ko, O. A., 2000b. Epifitnye gruppirovki vodoroslej pojmennykh ozer ust’evoj oblasti Dnepra. Vth All-Russian Conference on Aquatic Plants “Hydrobotany 2000”. Abstracts. Borok, 47–48 [Algal epiphyton groups of floodplain lakes of Dnepr estuary area (in Russian)].Google Scholar
  22. Marvan, P., J. Komárek, H. Ettl & J. Komárková, 1978. Dynamics of algal communities. Ecological Studies 28: 315–336.Google Scholar
  23. Meteleva, N. Y., 2000. Soderzhanie khlorofilla v perifitone vodokhranilishch Verkhnej Volgi. Vth All-Russian Conference on Aquatic Plants “Hydrobotany 2000”. Abstracts. Borok, 54–55 [Chlorophyll content in periphyton of Upper Volga Reservoirs (in Russian)].Google Scholar
  24. Mäemets, H. & L. Freiberg, 2005. Long-and short-term changes of the macrophyte vegetation in strongly stratified hypertrophic Lake Verevi. Hydrobiologia 547: 175–184.CrossRefGoogle Scholar
  25. Müller, U., 1994. Seasonal development of epiphytic algae on Phragmites australis (Cav.) Trin. ex Sten. in a eutrophic lake. Archiv für Hydrobiologie 129: 273–292.Google Scholar
  26. Müller, U., 1995. Vertical zonation and production rates of epiphytic algae on Phragmites australis. Freshwater Biology 34: 69–80.Google Scholar
  27. Ott, I., T. Kõiv, P. Nõges, A. Kisand, A. Järvalt & E. Kirt, 2005. General description of partly meromictic hypertrophic Lake Verevi, its ecological status, changes during the past eight decades and restoration problems. Hydrobiologia 547: 1–20.CrossRefGoogle Scholar
  28. Paterson, M. J., D. L. Findlay, A. G. Salki, L. L. Hendzel & R. H. Hesslein, 2002. The effects of Daphnia on nutrient stoichiometry and filamentous cyanobacteria: a mesocosm experiment in a eutrophic lake. Freshwater Biology 47: 1217–1233.CrossRefGoogle Scholar
  29. Putz, R., 1997. Periphyton communities in Amazonian blackand whitewater habitats: community structure, biomass and productivity. Aquatic Sciences 59: 74–93.CrossRefGoogle Scholar
  30. Reunanen, M., 2000. Perifüüton mõnedes Eesti teravalt kihistunud järvedes. Bakalaureusetöö. Manuscript in Tartu University. Tartu, 52 pp. [Periphyton in some steeply stratified Estonian lakes (in Estonian, English summary)].Google Scholar
  31. Sand-Jensen, K., 1990. Epiphyte shading: its role in resulting depth distribution of submerged aquatic macrophytes. Folia Geobotanica Phytotaxonomica 25: 315–320.Google Scholar
  32. Shevchenko, T. F., 1994. Fitoperiphyton Kievskogo i Kakhovskogo vodokhranilishch. Gidrobiol. Zh. 30(4): 13–21 [Phytoperiphyton of the Kiev and the Kakhovka Water Reservoirs (in Russian)].Google Scholar
  33. Sigareva, L. E. & V. G. Devyatkin, 1987. Soderzhanie fotosinteticheskikh pigmentov v perifitone Rybinskogo vodokhranilishcha. In Monakov, A.V. (ed.), Fauna i biologiya presnovodnykh organizmov. Trudy Instituta Vnutrennykh vodoemov 54(57): 3–18 [Content of photosynthetic pigments in periphyton of the Rybinsk reservoir (in Russian)].Google Scholar
  34. Szczepanska, W., 1970. Periphyton of several lakes of the Mazurian lakeland. Polish Archive of Hydrobiology 17: 397–418.Google Scholar
  35. Tolstoy, A. 1977. Chlorophyll a as a measure of phytoplankton biomass. Acta Universitatis Uppsaliensis (Uppsala) 416: 30.Google Scholar
  36. Vymazal, J., C. B. Craft & C. J. Richardson, 1994. Periphyton response to nitrogen and phosphorus additions in Florida Everglades. Archiv für Hydrobiologie 103: 75–97.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Reet Laugaste
    • 1
  • Markku Reunanen
    • 1
  1. 1.Institute of Zoology and BotanyEstonian Agricultural UniversityRannu, Tartu CountyEstonia

Personalised recommendations