Resource ratios and phytoplankton species composition in a strongly stratified lake

  • Toomas Kõiv
  • Kersti Kangro
Part of the Developments in Hydrobiology book series (DIHY, volume 182)


The epilimnetic phytoplankton and its relations to nutrient content in Lake Verevi through the whole vegetation period in 2000 were studied. Lake Verevi (surface 12.6 ha, mean depth 3.6 m, maximum depth 11 m) is a hypertrophic hard-water lake, where the so-called spring meromixis occurs due to an extremely warm spring. Most dissolved nutrients in the epilimnion were low already in spring, and their concentrations were quite stable during the study period. The concentration of total silicon was very low in spring but increased rapidly in summer. Total phosphorus followed the pattern for stratified eutrophic lakes, and total nitrogen was quite high. The stoichiometric N:P ratio fluctuated between 25 and 81. The dynamics of phytoplankton biomass with a spring peak from April to May and a late summer peak from July to August is typical of Estonian eutrophic lakes. Green algae and chrysophytes occurred in the phytoplankton throughout the vegetation period. The spring peak was dominated by diatoms (Synedra ulna and Synedra acus var. angustissima) and the summer peak was caused by Aphanizomenon klebahnii and Ceratium hirundinella. The study showed that in physically stratified systems, the total concentration of limiting resources and plain physical factors (light and temperature) may be more important in the determination of phytoplankton dominants than different resource ratios. A combination of light and temperature optimum, along with nutrient utilization and transport capacity, effectively segregates phytoplankton species and can be used for the explanation of seasonal succession pattern.

Key words

resource ratios phytoplankton stratification seasonal dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arvola, L. & A. M. Rask, 1984. Relations between phytoplankton and environmental factors in a small, spring-meromictic lake in Southern Finland. Aqua Fennica 14: 129–138.Google Scholar
  2. Bulgakov, N. G. & A. P. Levich, 1999. The nitrogen:phosphorus ratio as a factor regulating phytoplankton community structure. Archiv für Hydrobiologie 146: 3–22.Google Scholar
  3. Grasshoff, K., M. Ehrhardt & K. Kremling (eds.), 1982. Methods of Seawater Analysis. ISBN (Verlag Chemie), 3-527, 25,998-26,008.Google Scholar
  4. Hansen, H. P. & F. Koroleff, 1999. Determination of nutrients. In K. Grasshoff, K. Kremling & M. Ehrhardt (eds.), Methods of Seawater Analysis. WILEY-VCH, Weinheim, New York, Chichester, Brisbane, Singapore, Toronto, 600 pp.Google Scholar
  5. Kilham, S., 1986. Dynamics of Lake Michigan phytoplankton communities in continuous cultures along a Si:P loading gradient. Canadian Journal of Fisheries and Aquatic Sciences 43: 351–360.CrossRefGoogle Scholar
  6. Kangro, K., R. Laugaste, P. Nõges & I. Ott, 2005. Long-term changes and seasonal development of phytoplankton in a strongly stratified, hypertrophic lake. Hydrobiologia 547:91–103.CrossRefGoogle Scholar
  7. Lindholm, T. & J. E. Eriksson, 1990. Factors regulating primary productivity in a eutrophic lake with blooms of Microcystis Verhandlung Internationale Vereinigung für theoretische und angewande. Limnologie 24: 657–661.Google Scholar
  8. Nõges, T. & K. Kangro, 2005. Primary production of phytoplankton in a strongly stratified temperate lake. Hydrobiologia 547: 105–122.Google Scholar
  9. Nõges, T. & I. Solovjova, 2005. The formation and dynamics of deep bacteriochlorophyll maximum in the temperate and partly meromictic Lake Verevi. Hydrobiologia 547: 73–81.Google Scholar
  10. Oliver, G. G. & R. L. Ganf, 2000. Freshwater blooms. In Whitton, B. A. & M. Potts (eds.) The Ecology of Cyanobacteria. Their Diversity in Time and Space. Kluwer Academic Publishers, pp 149–194.Google Scholar
  11. Ott, I. & R. Laugaste, 1998. Organic matter and the composition of Volvocales and Chlorococcales in Estonian small lakes. Biologia Bratislava 53/4: 529–535.Google Scholar
  12. Ott, I., T. Kõiv, P. Nõges, A. Kisand, A. Järvalt & E. Kirt, 2005. General description of partly meromictic hypertrophic Lake Verevi, its ecological status, changes during the past eight decades and restoration problems. Hydrobiologia 547: 1–20.CrossRefGoogle Scholar
  13. Perakis, S., E. B. Welch & J. M. Jacoby, 1996. Sediment-towater blue-green algal recruitment in response to alum and environmental factors. Hydrobiologia 318: 165–177.CrossRefGoogle Scholar
  14. Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, 384 pp.Google Scholar
  15. Reynolds, C. S., 1987. Community organization in freshwater plankton. In Gee, J. H. R. & P. S. Giller (eds.) Organization of Communities Past and Present. Blackwell Scientific, Oxford, 297–325.Google Scholar
  16. Reynolds, C. S., 1996. Vegetation processes in the pelagic: a model for ecosystem theory. In Kinne, O. (ed.) Exellence in Ecology 9. Ecology Institute” Oldendorf/Luhe, Germany.Google Scholar
  17. Reynolds, C. S., 1999. Non-determinism to probability, or N:P in the community ecology of phytoplankton. Archiv für Hydrobiologie 146: 23–35.Google Scholar
  18. Sandgren, C. D., 1988. The ecology of Crysophyte flagellates: their growth and perennation strategies as freshwater phytoplankton. In Sandgren, C. D. (ed.) Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge, 9–104.Google Scholar
  19. Siegel, S. & N. J. Castellan, 1988. Nonparametric Statistics for the Behavioral Sciences. (2nd ed., p. 399). McGraw-Hill, New York.Google Scholar
  20. Smith, V. H. & S. J. Bennet, 1999. Nitrogen: phosphorus ratios and phytoplankton community structure in lakes. Archiv für Hydrobiologie, 146: 37–53.Google Scholar
  21. Sommer, U., 1988. Growth and survival strategies of planktonic diatoms. In Sandgren, C. D. (ed.) Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, 227–260.Google Scholar
  22. Sommer, U., 1989.. The role of competition for limiting resources in phytoplancton species replacements. In Sommer, U. (ed.) Plankton Ecology. Springer, 57–106.Google Scholar
  23. Sommer, U., 1993. Phytoplancton competition in Plußsee: A field test of the resource-ratio hypothesis. Limnology and Oceanography 38: 838–845.CrossRefGoogle Scholar
  24. Sommer, U., 1999. A comment on the proper use of nutrient ratios in microalgal ecology. Archiv für Hydrobiologie 146: 55–64.Google Scholar
  25. StatSoft, Inc., 2001. STATISTICA (data analysis software system), version 6. Scholar
  26. Tammert, H., V. Kisand & T. Nõges, 2005. Bacterioplankton abundance and activity in a small hypertrophic stratified lake. Hydrobiologia 547: 83–90.CrossRefGoogle Scholar
  27. Tilman, D., 1977. Resource competition between planctonic algae: an experimental and theoretical approach. Ecology 58:338–348.Google Scholar
  28. Tilman, D., 1982. Resource Competition and Community Structure. Princeton University Press, Princeton, New Jersey, USA.Google Scholar
  29. Tilman, D., R. Kiesling, R. Sterner, S. Kilham & F. A. Johnson, 1986. Green, blue-green and diatom algae: taxonomic differences in competitive ability for phosphorus, silicon and nitrogen. Archiv für Hydrobiologie 106: 473–485.Google Scholar
  30. Tõnno, I., K. Ott & T. Nõges, 2005. Nitrogen dynamics in steeply stratified temperate Lake Verevi, Estonia. Hydrobiologia 547: 63–71.CrossRefGoogle Scholar
  31. Urabe, J., T. K. Gurung & T. Yoshida, 1999. Effects of phosphorus supply on phagotrophy by the mixotrophic alga Uroglena americana (Chrysophyceae). Aquatic Microbial Ecology 18: 77–83.Google Scholar
  32. Utermöhl, H., 1958. Zur Vervollkomnung der quantitativen Phytoplankton MethodikMitteilungen internationale Vereingung für theoretische und angewandte. Limnologie 9: 1–38.Google Scholar
  33. Vollenweider, R. & J. Kerekes, 1982. Eutrophication of Waters. Monitoring, Assessment and Control. OECD” Paris.Google Scholar
  34. Zingel, P. & I. Ott, 2000. Vertical distribution of planktonic ciliates in strongly stratified temperate lake. Hydrobiologia 435: 19–26.CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Toomas Kõiv
    • 1
  • Kersti Kangro
    • 1
  1. 1.Institute of Zoology and Botany, Võrtsjärv Limnological StationEstonian Agricultural UniversityRannu, Tartu CountyEstonia

Personalised recommendations