Primary production of phytoplankton in a strongly stratified temperate lake

  • Tiina Nõges
  • Kersti Kangro
Part of the Developments in Hydrobiology book series (DIHY, volume 182)


Lake Verevi (12.6 ha, maximum depth 11.0 m, mean depth 3.6 m) is a strongly eutrophic and stratified lake. Planktothrix agardhii is the most characteristic phytoplankton species in summer and autumn, while photosynthesizing sulphur bacteria can occur massively in the metalimnion. Primary production (PP) and chlorophyll a concentration (Chl a) were seasonally studied in 1991, 1993, 2000, and 2001. Vertical distribution of PP was rather complex, having usually two peaks, one at or near the surface (0–1 m), and another deeper (at 3–7 m) in the metalimnion. The values of dark fixation of CO2 in the metalimnion were in most cases higher than those in the upper water layer. Considering the average daily PP 896 mg C m−2 and yearly PP 162 mg C m−2, Secchi depth 2.34 m, and epilimnetic concentrations of chlorophyll a (19.6 mg m−3), total nitrogen and total phosphorus (TP, 52 mg m−3) in 2000, L. Verevi is a eutrophic lake of a ‘good’ status. Considering the total amounts of nutrients stored in the hypolimnion, the average potential concentrations in the whole water column could achieve 1885 mg m−3 of TN and 170 mg m−3 of TP reflecting hypertrophic conditions and a ‘bad’ status. Improvement of the epilimnetic water quality from the 1990s to the 2000s may have resulted from incomplete spring mixing and might not reflect the real improvement. A decreased nutrient concentration in the epilimnion has supported the establishment of a ‘clear epilimnion state’ allowing light to penetrate into the nutrient-rich metalimnion and sustaining a high production of cyanobacteria and phototrophic sulphur bacteria.

Key words

primary production sharply stratified lake interannual seasonal and diurnal dynamics metalimnetic chlorophyll maximum ecological status 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boulion, V. V., 1983. Pervichnaya produktsiya planktona vnutrennyikh vodoyoemov. Leningrad, Nauka, 149 pp. [Primary production of inland water bodies. In Russian].Google Scholar
  2. Guidelines for the Baltic monitoring programme for the third stage, 1984. The Baltic Marine Biologists. Publ. 1, 2nd edn.Google Scholar
  3. Hakanson, L. & V. Boulion, 2002. The lake foodweb — modeling predation and abiotic/biotic interactions. Backhus Publishers, Leiden, 344 pp.Google Scholar
  4. Hilmer, T. & G. C. Bate, 1992. Filter types, Filtration and Post-Filtration Treatment in Phytoplankton Production Studies. Applied and Environmental Microbiology 33: 1225–1228.Google Scholar
  5. Järvalt, A., T. Krause & A. Palm, 2005. Diel migration and spatial distribution of fish in a small stratified lake. Hydrobiologia 547: 197–203.CrossRefGoogle Scholar
  6. Kangro, K., R. Laugaste, P. Nõges & I. Ott, 2005. Long-term changes and special features of seasonal development of phytoplankton in a strongly stratified, hypertrophic lake. Hydrobiologia 547: 91–103.CrossRefGoogle Scholar
  7. Kuznetsov, S. I. & G. A. Dubinina, 1989. Metody izucheniya vodnykh mikroorganizmov. Moskva, Nauka. [Methods of the study of water microorganisms. In Russian].Google Scholar
  8. Kübar, K., H. Agasild, T. Virro & I. Ott, 2005. Vertical distribution of zooplankton in a strongly stratified hypertrophic lake. Hydrobiologia 547: 151–162.CrossRefGoogle Scholar
  9. Laugaste, R., 1991. Fütoplankton. In Timm, H. (ed.), State of Lake Verevi. Hydrobiological researches XVII, Tartu: 69–90. [Phytoplankton. In Estonian].Google Scholar
  10. Laugaste, R., 1994. Verevi järve seisund, biogeensete ainete päritolu ja tervistamise abinõud. In Järvekülg, A. (ed.), Eesti jògede ja järvede seisund ning kaitse. Teaduste Akadeemia Kirjastus, Tallinn, 47–64. [The state, the origin of nutrients and the measures necessary for recovering Lake Verevi. In Estonian].Google Scholar
  11. Lampert, W. & U. Sommer, 1997. Limnoecology: The Ecology of Lakes and Streams. Oxford University Press, New York & Oxford, 382 pp.Google Scholar
  12. Lignell, R., 1992. Problems in filtration fractionation of 14C primary productivity samples. Limnology and Oceanography 37: 172–178.CrossRefGoogle Scholar
  13. Moss, B. 1998. Ecology of Fresh Waters. Man and Medium, Past to Future. 3rd edn. Blackwell Science Ltd., 557 pp.Google Scholar
  14. Niemi, M., J. Kuparinen, A. Uusi-Rauva & K. Korhonen, 1983. Preparation of algal samples for liquid scintillation counting. Hydrobiologia 106: 149–159.CrossRefGoogle Scholar
  15. Nõges, P., 2005. Water and nutrient mass balance of temperate partly meromictic Lake Verevi. Hydrobiologia 547: 21–31.Google Scholar
  16. Nõges, P. & T. Nõges, 1998a. Stratification of Estonian lakes studied during hydrooptical expeditions in 1995-97. Proceedings of the Estonian Academy of Sciences. Biology. Ecology 47, 268–281.Google Scholar
  17. Nõges, T. & P. Nõges, 1998b. Primary production of Lake Võrtsjärv. Limnologica 28(1): 29–40.Google Scholar
  18. Nõges, T. & I. Solovjova, 2000. The influence of different solvents and extraction regimes on the recovery of chlorophyll a from freshwater phytoplankton. Geophysica 36 (1–2): 161–168.Google Scholar
  19. Nõges, T. & I. Solovjova, 2005. The formation and dynamics of deep bacteriochlorophyll maximum in the temperate and partly meromictic Lake Verevi. Hydrobiologia 547: 73–81.Google Scholar
  20. OECD, 1982. Eutrophication of Waters. Monitoring, Assessment and Control. OECD, Paris, 154 pp.Google Scholar
  21. Ott, I., 2001. Typology and ecological classification of Estonian Lakes. In Bäck, S. & K. Karttunen (eds.) Classification of Ecological Status of Lakes and Rivers. TemaNord 584, Nordic Council of Ministers, Helsinki, 52–63.Google Scholar
  22. StatSoft Inc., 2001. STATISTICA (data analysis software system), version 6. Scholar
  23. Steeman-Nielsen, E., 1952. The use of radioactive carbon (14C) for measuring primary production in the sea. Journal du Conseil permanent international pour l’exploration del la mer 18: 117–140.Google Scholar
  24. Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman and Hall, London.Google Scholar
  25. Timm, H. (ed.). Verevi järve seisund. 1991. A Monograph. Tartu: 139. [State of Lake Verevi. In Estonian, English and Russian summary].Google Scholar
  26. Wetzel, R. G., 1983. Limnology. Saunders College Publishing, 767 pp.Google Scholar
  27. Williams, P. J., le, B. & N. W. Jenkinson, 1980. A simple and inexpensive 4-π light collector and two designs for a light meter for light attenuation studies. Freshwater Biology 10: 491–496.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Tiina Nõges
    • 1
  • Kersti Kangro
    • 1
  1. 1.Institute of Agricultural and Environmental SciencesEstonian Agricultural University, Centre for LimnologyRannu, Tartu CountyEstonia

Personalised recommendations