General description of partly meromictic hypertrophic Lake Verevi, its ecological status, changes during the past eight decades, and restoration problems

  • Ingmar Ott
  • Toomas Kõiv
  • Peeter Nõges
  • Anu Kisand
  • Ain Järvalt
  • Enno Kirt
Part of the Developments in Hydrobiology book series (DIHY, volume 182)


The present study describes generally the ecosystem of Lake Verevi while more detailed approaches are presented in the same issue. The main task of the article is to estimate long-term changes and find the best method for the restoration of good ecological status. Lake Verevi (surface 12.6 ha, mean depth 3.6 m, maximum depth 11 m, drainage area 1.1 km2, water exchange 0.63-times per year) is a hypertrophic hardwater lake located in town Elva (6400 inhabitants). Long-term complex limnological investigations have taken place since 1929. The lake has been contaminated by irregular discharge of urban wastewaters from oxidation ponds since 1978, flood from streets, and infiltrated waters from the surrounding farms. The socalled spring meromixis occurred due to extremely warm springs in recent years. The index value of buffer capacity of Lake Verevi calculated from natural conditions is on the medium level. Water properties were analysed according to the requirements of the EU Water Framework Directive. According to the classi- fication, water quality as a long-term average of surface layers is moderate-good, but the water quality of bottom layers is bad. Values in deeper layers usually exceed 20–30 times the calculated reference values by Vighi and Chiaudani’s model. Naturally, at the beginning of the 20th century the limnological type of the lake was moderately eutrophic. During the 1980s and 1990s the ecosystem was out of balance by abiotic characteristics as well as by plankton indicators. Rapid fluctuations of species composition and abundance can be found in recent years. Seasonal variations are considerable and species composition differs remarkably also in the water column. The dominating macrophyte species vary from year to year. Since the annual amount of precipitation from the atmosphere onto the lake surface is several times higher, the impact of swimmers could be considered irrelevant. Some restoration methods were discussed. The first step, stopping external pollution, was completed by damming the inlet. Drainage (siphoning) of the hypolimnetic water is discussed. Secondary pollution occurs because Fe:P values are below the threshold. The authors propose to use phosphorus precipitation and hypolimnetic aeration instead of siphoning.

Key words

long-term ecosystem changes ecological status vertical distribution of substances and biota lake restoration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alekin, O. A., 1959. Metody issledovaniya fizicheskih svojstv i himicheskovo svoistva vody In Pavlovski, E. N. & V. I. Zhadin, (eds), Zhizn’ presnyh vod SSSR. 4,2: 213–300 [Methods for investigation of physical and chemical properties of water. In Russian].Google Scholar
  2. Berge, D., 1993. Restaureringsstrategi for eutrofierte innsjøer. NIVA — rapport. 73 pp. [Restoration strategies for eutrophied lakes. In Norwegian].Google Scholar
  3. Björk, S., 1988. Redevelopment of lake ecosystems — a casestudy. Approach —Ambio 17(2): 90–98.Google Scholar
  4. Björk, S., 1994a. Planning and accomplishment of redevelopment and restoration projects. In Eiseltova’, M. (ed.), Restoration of Lake Ecosystems, A Holistic Approach, 59–61 pp.Google Scholar
  5. Björk, S., 1994b. Restoration methods and techniques. Sediment removal. In: Eiseltova’, M. (ed.), Restoration of Lake Ecosystems, A Holistic Approach, 82–89 pp.Google Scholar
  6. Cooke, G. D., E. B. Welch, S. A. Peterson & P. R. Newroth, 1993. Restoration and Management of Lakes and Reservoirs. Lewis Publishers, Boca Raton, 548 pp.Google Scholar
  7. Crumpton, W. G., T. M. Isenhart & P. D. Mitchell, 1992. Nitrate and organic N analyses with second-derivative spectroscopy. Limnology and Oceanography 37(4): 907–913.CrossRefGoogle Scholar
  8. Dawidowicz, P., A. Perjs, A. Engelmayer, A. Martyniak, J. Kozlowski, L. Kufel & M. Paradowska, 2002. Hypolimnetic anoxia hampers top-down food-web manipulation in a eutrophic lake. Freshwater Biology 47: 2401–2409.CrossRefGoogle Scholar
  9. Eesti Loodus, 1995. Compiled by A. Raukas. Publishing Office “Valgus”. Tallinn. 606 pp. [Estonia. Nature. In Estonian, Russian and English summary].Google Scholar
  10. Eesti Järved, 1968. Tallinn, “Valgus”. 532 pp. [Estonian lakes. In Estonian].Google Scholar
  11. Eiseltova’, M., (ed.). 1994. Restoration of Lake Ecosystems, A Holistic Approach. Preface, 7–8 pp.Google Scholar
  12. Faafeng, B. A. & Å. Brabrand, 1990. Biomanipulation of a small, urban lake — removal of fish exclude bluegreen blooms. Verhandlungen Internationale Vereinigung für theoretische und angewandte Limnologie 24: 597–602.Google Scholar
  13. Faafeng, B. A. & J. P. Nilssen, 1981. A twenty-year study of eutrophication in a deep Soft-water lake. Verhandlungen Internationale Vereinigung für theoretische und angewandte Limnologie. 21: 412–424.Google Scholar
  14. Fall, M. J, 1996. JENWAY Model 4150 Conductivity Meter manual. Jenway Limited, Gransmore Green, Felsted, Dunmow, Essex, CM6 3LB, England, 19 pp.Google Scholar
  15. Gollerbach, M. (eds), 1977. Zhizn rastenij. Tom Tretij. Vodorosli i lishainiki. Moskva, Prosveshtshenije p. 487 Life of plants. Third part. Algae and Lichens. In Russian.Google Scholar
  16. Gulati, R. D., 1995a. Food-chain manipulation as a tool in management of small lakes in the Netherlands: The Lake Zwemlust example. In: Guidelines for Lake management. Vol. 7. de Bernardi R. & G. Giussani (eds), Biomanipulation in Lakes and Reservoirs management, 147–163 pp.Google Scholar
  17. Gulati, R. D., 1995b. Manipulation of Fish Population for Lake Recovery from Eutrophication in the Temperate Region. In: Guidelines for Lake Management. Vol. 7. de Bernardi R. & G. Giussani (eds), Biomanipulation in Lakes and Reservoirs management, 53–81 pp.Google Scholar
  18. Hansen, H. P. & F. Koroleff, 1999. Determination of nutrients. In Grasshoff, K., K. Kremling & M. Ehrhardt (eds), Methods of Seawater Analysis. WILEY-VCH, Weinheim. New York. Chichester. Brisbane. Singapore. Toronto, 600 p.Google Scholar
  19. Heinonen, P., 1980. Quantity and composition of phytoplankton in Finnish Inland Waters. Publication of Water Research Institute, Helsinki, 37, 91.Google Scholar
  20. Hellat, K., A. Malirin, L. Mei & T. Tenno, 1986. Metrologicheskoe obespechenie sredstv analiza kisloroda v vode. Acta et commentationes Universitatis Tartuensis 757: 184–193 Metrological garanteeing of devices for measuring oxygen in the water. In Russian.Google Scholar
  21. Hutchinson, G. E., 1938. Chemical stratification and lake morphology. Proceedings of the National Academy of Sciences 4: 63–69.Google Scholar
  22. Hutchinson, G. E., 1967. A Treatise on Limnology. II. Introduction to Lake Biology and the Limnoplankton. John Wiley and Sons, New York, 1115.Google Scholar
  23. Järvalt, A., T. Krause & A. Palm, 2005. Diel migration and spatial distribution of fish in a small stratified lake. Hydrobiologia 547: 197–203.CrossRefGoogle Scholar
  24. Järvet, A., 1989. Veekogude kasutamise vastuolud Kavilda oja näitel In: Põllumajandus ja keskkonnakaitse. Tallinn — Elva. pp. 84–90 [Contradictions of management of water bodies on example of Kavilda stream. In Estonian].Google Scholar
  25. Jensen, H. S., P. Kristensen, E. Jeppesen & A. Skytthe, 1992. Iron:phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia 235/236: 731–743.CrossRefGoogle Scholar
  26. Jeppesen, E., J. P. Jensen, P. Kristensen, M. Søndergaard, E. Mortensen, O. Sortkjær, & K. Olrik, 1990b. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2: threshold levels, long-term stability and conlusions. — Hydrobiologia 200/201: 219–227. Gulati, R. D., Lammens, E. H. R. R., Meijer, M.-L., van Donk, E (eds), Biomanipulation — Tool for Water Management.Google Scholar
  27. Jeppesen, E., M. Søndergaard, E. Mortensen, P. Kristensen, B. Riemann, H. J. Jensen, J. P. Müller, O. Sortkjær, J. P. Jensen, K. Christofferson, S. Bosselmann, E. Dall, & 1990a. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 1: cross-analysis of three Danish case studies. — Hydrobiologia 200/201: 205–218. Gulati, R. D., Lammens, E. H. R. R., Meijer, M.-L., van Donk, E., (eds), Biomanipulation — Tool for Water Management.Google Scholar
  28. Kangro, K., R. Laugaste, P. Nõges & I. Ott, 2005. Long-term changes and seasonal development of phytoplankton in a strongly stratified hypertrophic lake. Hydrobiologia 547: 91–103.CrossRefGoogle Scholar
  29. Kasprzak, P., 1995. Objectives of biomanipulation. In: De Bernardi, R., Giussani, G. (eds), Guidelines of lake management. 7. de Bernardi, R. and Giussani, G. (eds), Biomanipulation in lakes and reservoirs management, 1–15 pp.Google Scholar
  30. Kasprzak, P., J. Benndorf & T. R. Mehner Koschel, 2002. Biomanipulation of lake ecosystems: an introduction. Freshwater Biology 47: 2277–2281.CrossRefGoogle Scholar
  31. Kisand, A., 2005. Distribution of sediment phosphorus fractions in hypertrophic strongly stratified Lake Verevi. Hydrobiologia 547: 33–39.CrossRefGoogle Scholar
  32. Koroleff, F., 1982. Total and organic nitrogen. In Grasshoff, K. (ed.), Methods of Seawater Analysis. Verlag chemie, 162–168.Google Scholar
  33. Kört, M., T. Truuts & K. Pajuste, 2002. Õhu saasteainete kaugkande seire. Eesti Keskkonnaseire 2001. 23–25. [Monitoring of long-distance air pollution. In Estonian].Google Scholar
  34. Krienitz, L. & P. R. Kasprzak Koschkel, 1996. Long term study on the influence of eutrophication, restoration and biomanipulation on the structure and development of phytoplankton communities in Feldberger Haussee (Baltic Lake District, Germany). Hydrobiologia 330: 89–110.CrossRefGoogle Scholar
  35. Lampert, W. & U. Sommer, 1997. Limnoecology: The Ecology of Lakes and Streams. Oxford Univeristy Press, 382 pp.Google Scholar
  36. Lindenschmidt, K.-E. & I. Chorus, 1997. The effect of aeration on stratification and phytoplankton populations in Lake Tegel. Berlin Archiv Für Hydrobiologie 139(3): 317–346.Google Scholar
  37. Loopmann, A., 1984. Suuremate Eesti järvede morfomeetrilised andmed ja Veevahetus. Tallinn, 150 lk. [Morphometrical data and water exchange of larger Estonian lakes. In Estonian].Google Scholar
  38. Mäemets, Aare & K. Ennok, 1991. Valgala iseloom, sissevoolude vee keemiline koostis ja järve resotsukoormus. In Timm, H. (ed.), State of Lake Verevi. Hydrobiological researches XVII. pp. 34–44. [Catchment features, chemical composition of water of inflows and pollution loading. In Estonian].Google Scholar
  39. Mäemets, Aime, 1991. Suurtaimestik. In H. Timm (ed.), State of Lake Verevi (Hydrobiological Researches XVII), Tartu: 95–106 [Macrovegetation. In Estonian].Google Scholar
  40. Mäemets, A., I. Ott & A. Mäemets, 1994. Eesti väikejärvede seisundi muutused ja kaitse. Kogumik: Eesti jõ gede ja järvede seisund ning kaitse. Toim. A. Järvekülg. Teaduste Akadeemia kirjastus. Tallinn, lk. 32–47. [Changes an protection of Estonian small lakes). In Estonian, English summary].Google Scholar
  41. Mäemets, H. & L. Freiberg, 2005. Long-and short-term changes of the macrophyte vegetation in strongly stratified hypertrophic Lake Verevi. Hydrobiologia 547: 175–184.CrossRefGoogle Scholar
  42. Möls, T., H. Starast, A. Milius & A. Lindpere, 1996. The hydrochemical state of Lake Peipsi-Pihkva. Hydrobiologia 338: 37–47.CrossRefGoogle Scholar
  43. Moss, B., D. Stephen, C. Alvarez, E. Becares, W. Van de Bund, S. E. Collings, E. Van Donk, E. De Eyto, T. Feldmann, C. Fernández-Aláez, M. Fernández-Aláez, R. J. M. Frankeng, F. García-Criado, E. Gross, M. Gyllström, L.-A. Hansson, K. Irvine, A. Järvalt, J.-P. Jenssen, E. Jeppesen, T. Kairesalo, R. Kornijów, T. Krause, H. Künnap, A. Laas, E. Lill, B. Lorens, H. Luup, M. R. Miracle, P. Nõges, T. Nõges, M. Nykänen, I. Ott, W. Peczula, E. T. H. M. Peeters, G. Phillips, S. Romo, V. Russell, J. Salujõe, M. Scheffer, K. Siewertsen, H. Smal, C. Tesch, H. Timm, L. Tuvikene, I. Tõnno, T. Virro & D. Wilson, 2003. The determination of ecological quality in shallow lakes — a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquatic Conservation: Marine and Freshwater Ecosystems, 13: 507–549.CrossRefGoogle Scholar
  44. Nixdorf, B., J. Mischke, U. Hoffmann, A. Hemm, M. & E. Hoehn, 2001. Classification and assessment of lakes in Germany according to the bilogical indicator phytoplankton — first results. Classification of Ecological Statud of Lakes and Rivers. Saara Bäck & Krister Karttunen (eds). Tema-Nord 2001: 584, 24–27 pp.Google Scholar
  45. Nõges, P., 2005. Water and nutrient mass balance of temperate partly meromictic Lake Verevi Hydrobiologia 547: 21–31.Google Scholar
  46. Nõges, T. & K. Kangro, 2005. Primary production of phytoplankton in a strongly stratified temperate lake. Hydrobiologia 547: 105–122.Google Scholar
  47. Nygaard, G., 1949. Hydrobiological Studies on some Danish Ponds and Lakes II: The quotient hypothesis and some little known or new phytoplankton organisms. Kunglige Danske Vidensk, Selskab. 7, 242 pp.Google Scholar
  48. Ott, I., 2001. Typology and ecological classification of Estonian lakes. In Classification of ecological status of Lakes and Rivers. TemaNord 2001: 584, 62–64 pp.Google Scholar
  49. Ott, I. & T. Kõiv, 1999. Eesti väikejärvede eripära ja muutused. Estonian Small Lakes: Special Features and Changes. Tallinn. 128 pp.Google Scholar
  50. Ott, I. & R. Laugaste, 1996. Fütoplanktoni koondindeks Üldistus Eesti väikejärvede kohta Eesti vabariigi Keskkonnaministeeriumi Infoleht 3/96. lk. 7–8. [Phytoplankton compound quotient. Conclusion about Estonian small lakes. In Estonian].Google Scholar
  51. Ott, I., R. Laugaste, S. Lokk & A. Mäemets, 1997. Plankton changes in Estonian small lakes in 1951–93. — Proceedings of Estonian Academy of Sciences Biology. Ecology. 46, 1/2, 58–79.Google Scholar
  52. Ott, I. & S. Lokk, 1996. Viitna Pikkjärv ja puhkajad — Eesti Loodus. 174–176. [Lake Viitna Pikkjärv and holidaymakers. In Estonian, English summary].Google Scholar
  53. Ott, I., A. Rakko, D. Sarik, P. Nõges & K. Ott, 2005. Sedimentation rate of seston during the formation of temperature stratification after ice break-up in the partly meromictic Lake Verevi. Hydrobiologia 547: 51–61.CrossRefGoogle Scholar
  54. Pihu, E., 1998. Fishes and fisheries management in Lake Võrtsjärv. Limnologica 28(1): 91–94.Google Scholar
  55. Pipp, E. & E. Rott, 1995. A phytoplankton compartment model for a small meromictic lake with special reference to speciesspecific niches and long-term changes. Ecological Modellling 78: 129–148.Google Scholar
  56. Prede, M., I. Ott, A. Kisand, R. Laugaste, H. Mäemets, H. Timm, A. Järvalt, E. Kirt & T. Oja, 1999. A. Maastik (ed.), Lakescape of Otepää: Past, present and future. Tacis-Phare, 24 pp.Google Scholar
  57. Premazzi, G. & G. Chiaudani, 1992. Current approaches to assess water quality in lakes. In ECSC-EEC-EAEC, Brussels, Luxembourg, 249–308.Google Scholar
  58. Reports of the Baltic Intercalibration Workshop, 1977, Kiel: 27–28.Google Scholar
  59. Richter, A. F., 1986. Biomanipulation and its feasibility for water quality management in shallow eutrophic management in shallow eutrophic water bodies in the Netherlands. Hydrobiological Bulletin 20(1/2): 165–172.Google Scholar
  60. Riikoja, H., 1930. Zur Morphometrie eineiger Seen Eestis. Andmeid Eesti ala järvede uurimiseks 15: 116–201.Google Scholar
  61. Riikoja, H., 1940. Zur Kenntnis eineiger Seen Ost-Eestis, insbesonderere ihrerWasserchemie. Loodusvarade Instituudi Limnoloogia Laboratooriumi Avaldised, 2.Google Scholar
  62. Ripl, W., 1976. Biochemical oxidation of polluted lake sediment with nitrate. A new restoration method. Ambio 5: 132–135.Google Scholar
  63. Ripl, W., 1994. Restoration methods and techniques. Sediment treatment. In Eiseltova’, M. (ed.), Restoration of Lake Ecosystems, a holistic approach, 75–82 pp.Google Scholar
  64. Rosenström, U. & L. Lepistö, 1996. Phytoplankton indicator species of different types of boreal lakes. Algological Studies 82=Archiv Für Hydrobiologie Supplementum 116, 131–140 pp.Google Scholar
  65. Rummi, P., T. Mägi, J. Ütsi, H. Mäemets, A. Lindpere & A. Mäemets, 1991. Põhjasetted. In Timm, H. (ed.), State of Lake Verevi. Hydrobiological Researches XVII. 22–33 pp. [Bottom sediments. In Estonian].Google Scholar
  66. Scheffer, M., 1998. Ecology of shallow lakes. M.B. Busher (ed.), Population and Community Biology Series. Chapman & Hall Publisher, 357 pp.Google Scholar
  67. Schulz, L., 1981. Nährstoffeintrag in Seen durch Badegäste. Zentralblatt Für Bakteriologie., 1B, 6.Google Scholar
  68. Søndergaard, M., P. Kristensen & E. Jeppesen, 1993. Eight years of internal phosphorus loading and changes in the sediment phosphorus profile of Lake Søbygård Denmark. — Hydrobiologia, 253: 345–356.CrossRefGoogle Scholar
  69. Steenberger, C. L. M., J.-P. R. A. Sweerts & T. E. Cappenberg. 1993. Microbial biogeochemical processes in lakes: stratification and eutrophication, 69–99 pp.Google Scholar
  70. Timm, H. (ed.), 1991. Verevi järve seisund. A monograph. Tartu. 139 pp. [State of Lake Verevi. In Estonian, English and Russian summary].Google Scholar
  71. Timm, H. & T. Möls, 2005. Macrozoobenthos of lake Verevi. Hydrobiologia 547: 185–195.CrossRefGoogle Scholar
  72. Unifitsirovannye metody issledovaniya kachestva vod, 1977. I, Moskva: 831 pp. [Standardized methods for investigation of water quality. In Russian].Google Scholar
  73. Van Donk, E., & R. D. Gulati, 1991. Ecological management of aquatic ecosystems: a complementary technique to reduce eutrophication-related preturbians. In Terrestrial and aquatic ecosystems: preturbation and recovery. Published by Ellis Horword Limited, 566–575 pp.Google Scholar
  74. Vighi, M. & G. Chiaudani, 1985. A simple method to estimate lake phosphorus concentrations resulting from natural background loadings. Water Research 19: 987–991.CrossRefGoogle Scholar
  75. Vollenweider, R. A., 1975. Input — output models with special reference to the phosphorus loading concept in limnology. Scweizerische Zeitschrift für Hydrobiologie 37: 53–84.Google Scholar
  76. Wetzel, R. G., 1983. Limnology. Saunders College Publishing. 767 pp.Google Scholar
  77. Willen, E., 2000. Phytoplankton in water quality assessment — an indicator concept. In Heinonen, P., G. Ziglio, & A. Van der Beken (eds), Hydrological and limnological aspects of lake monitoring: 58–80. John Wiley & Sons Ltd.Google Scholar
  78. Wolter, K.-D., 1994. Restoration methods and techniques. Phosphorus precipitation. In Eiseltova’, M. (ed.), Restoration of Lake Ecosystems, a holistic approach, 63–69 pp.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Ingmar Ott
    • 1
  • Toomas Kõiv
    • 1
  • Peeter Nõges
    • 1
  • Anu Kisand
    • 1
  • Ain Järvalt
    • 1
  • Enno Kirt
    • 2
  1. 1.Institute of Zoology and BotanyEstonian Agricultural UniversityRannu, Tartu CountyEstonia
  2. 2.OÜ Enno Projektid LtdTallinnEstonia

Personalised recommendations