Skip to main content

SELF-ASSEMBLY OF QUANTUM DOTS FROM THIN SOLID FILMS

  • Conference paper
Book cover Advances in Sensing with Security Applications

Abstract

Some aspects of self-assembly of quantum dots in thin solid films are considered. Nonlinear evolution equations describing the dynamics of the film instability that results in various surface nanostructures are analyzed. Two instability mechanisms are considered: the one associated with the epitaxial stress and the other caused by the surface-energy anisotropy. It is shown that wetting interactions between the film and the substrate transform the instability spectrum from the long- to the short-wave type, thus yielding the possibility of the formation of spatially-regular, stable arrays of quantum dots that do not coarsen in time. Pattern formation is analyzed by means of amplitude equations near the instability threshold and by numerical solution of the strongly nonlinear evolution equations in the small-slope approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. A. Shchukin and D. Bimberg, Rev. Mod. Phys. 71, 1125 (1999).

    Article  ADS  Google Scholar 

  2. R.S. Williams, G. Medeiros-Ribeiro, T.I. Kamins and D.A.A. Ohlberg, J. Phys. Chem. B 102, 9605 (1998).

    Article  Google Scholar 

  3. K. Alchalabi, D. Zimin, G. Kostorz and H. Zogg, Phys. Rev. Lett. 90, 026104 (2003).

    Article  ADS  Google Scholar 

  4. D. Granados and J.M. Garcia, Appl. Phys. Lett. 82, 2401 (2003).

    Article  ADS  Google Scholar 

  5. J.A. Floro, M.B. Sinclair, E. Chason, L.B. Freund, R.D. Twesten, R.Q. Hwang and G.A. Lucadamo, Phys. Rev. Lett. 84, 701 (2000).

    Article  ADS  Google Scholar 

  6. R.J. Asaro and W.A. Tiller, Metall. Trans. 3, 1789 (1972); M.Ya. Grinfeld, Sov. Phys. Dokl. 31, 831 (1986).

    Article  Google Scholar 

  7. D.J. Srolovitz, Acta Metall. 17, 621 (1989); B.J. Spencer, P.W. Voorhees, and S.H. Davis, Phys. Rev. Lett. 67, 3696 (1991). B.J. Spencer, P.W. Voorhees, and S.H. Davis, J. Appl. Phys. 73, 4955 (1993).

    Google Scholar 

  8. A. Pimpinelli and J. Villain, Physics of Crystal Growth. Cambridge Univ. Press, Cambridge, 1998.

    Book  Google Scholar 

  9. J. Stewart and N. Goldenfeld, Phys. Rev. A 46, 6505 (1992); F. Liu and H. Metiu, Phys. Rev. B 48, 5808 (1993).

    Article  ADS  Google Scholar 

  10. A.A. Golovin, S.H. Davis and A.A. Nepomnyashchy, Phys. Rev. E 59, 803 (1999); T.V. Savina, A.A. Golovin, S.H. Davis, A.A.Nepomnyashchy, and P.W. Voorhees, Phys. Rev. E. 67, 021606 (2003).

    Article  ADS  Google Scholar 

  11. A.A. Golovin, S.H. Davis and P.W. Voorhees, “Self-Organization of Quantum Dots in Epitaxially-Strained Solid Films”, Phys. Rev. E 68, #056203 (2003).

    Article  ADS  Google Scholar 

  12. B.J. Spencer, S.H. Davis and P.W. Voorhees, Phys. Rev. B 47, 9760 (1993).

    Article  ADS  Google Scholar 

  13. M.C. Cross and P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993).

    Article  ADS  Google Scholar 

  14. D. Walgraef, Spatio-Temporal Pattern Formation, Springer, 1997.

    Google Scholar 

  15. M.I. Tribelskii, Usp. Fiz. Nauk 167, 167 (1997).

    Article  Google Scholar 

  16. P.C. Matthews and S.M. Cox, Nonlinearity 13, 1293 (2000); S.M. Cox and P.C. Matthews, Physica D 175, 196 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. J.L. Gray, R. Hull and J.A. Floro, Appl. Phys. Lett. 81, 2445 (2002).

    Article  ADS  Google Scholar 

  18. A.E. Nuz, A.A. Nepomnyashchy, A.A. Golovin, A. Hari and L.M. Pismen Physica D 135, 233 (2000).

    MathSciNet  MATH  Google Scholar 

  19. T. Mano, R. N-õtzel, G.J. Hamhuis, T.J. Eijkemans, and J.H. Wolter, J. Appl. Phys. 92, 4043 (2002).

    Article  ADS  Google Scholar 

  20. B.A. Malomed, A.A. Nepomnyashchy and M.I. Tribelsky, Sov. Phys. JETP 69, 388 (1989).

    Google Scholar 

  21. A.A. Golovin, A.A. Nepomnyashchy and L.M. Pismen, Physica D 81, 117 (1995).

    Article  MATH  Google Scholar 

  22. D. Granados and J.M. Garcia, Appl. Phys. Lett. 82, 2401 (2003).

    Article  ADS  Google Scholar 

  23. A.A. Golovin, M.S. Levine, T.V. Savina and S.H. Davis, Phys. Rev. B 70, #235342 (2004).

    Article  ADS  Google Scholar 

  24. P. Nozieres, in: Solids far from Equilibrium, ed.: C. Godreche, Cambridge Univ. Press, Cambridge, 1992.

    Google Scholar 

  25. M.E. Gurtin, Thermomechanics of Evolving Phase Boundaries in the Plane. Clarendon Press, Oxford, 1993.

    MATH  Google Scholar 

  26. C.H. Chiu and H. Gao in Thin Films: Stresses and Mechanical Properties V, ed.: S.P. Baker e.a., MRS Symposia Proc. #356 (Mater. Res. Soc., Pittsburgh 1995), p.33.

    Google Scholar 

  27. M.J. Beck, A. Van de Walle, and M. Asta, Phys. Rev. B 70, 205337 (2004).

    Article  ADS  Google Scholar 

  28. R.B. Hoyle, G.B. McFadden and S.H. Davis, Phil. Trans. Roy. Soc. Lond. A 354, 2915 (1996).

    Article  MATH  ADS  Google Scholar 

  29. G. Springholtz, V. Holy, M. Pinczolits and G. Bauer, Science 282, 734 (1998); M. Pinczolits, G. Springholtz and G. Bauer, Phys. Rev. B 60, 11524 (1999).

    Article  ADS  Google Scholar 

  30. K. Alchalabi, D. Zimin, G. Kostorz, and H. Zogg, Phys. Rev. Lett. 90, 026104 (2003)

    Article  ADS  Google Scholar 

  31. S.M. Wise, J.S. Lowengrub, J.S. Kim, and W.C. Johnson, Superlattices and Microstructures 36, 293 (2004); Y.W. Zhang, Phys. Rev. B 61, 10388 (2000); P. Liu, Y.W. Zhang and C. Lu, Phys. Rev. B 68, 195314 (2003); C. Chiu, Phys. Rev. B 69, 165413 (2004).

    Google Scholar 

  32. D.D. Vvedensky, J. Phys.: Cond. Matter 16, R1537 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Golovin, A.A., Voorhees, P.W., Davis, S.H. (2006). SELF-ASSEMBLY OF QUANTUM DOTS FROM THIN SOLID FILMS. In: Golovin, A.A., Nepomnyashchy, A.A. (eds) Advances in Sensing with Security Applications. NATO Science Series II: Mathematics, Physics and Chemistry, vol 218. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4355-4_04

Download citation

Publish with us

Policies and ethics