Skip to main content

CONVECTIVE PATTERNS IN LIQUID CRYSTALS DRIVEN BY ELECTRIC FIELD

  • Conference paper
Advances in Sensing with Security Applications

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 218))

Abstract

A systematic overview of various electric-field induced pattern forming instabilities in nematic liquid crystals is given. Particular emphasis is laid on the characterization of the threshold voltage and the critical wavenumber of the resulting patterns. The standard hydrodynamic description of nematics predicts the occurrence of striped patterns (rolls) in five different wavenumber ranges, which depend on the anisotropies of the dielectric permittivity and of the electrical conductivity as well as on the initial director orientation (planar or homeotropic). Experiments have revealed two additional pattern types which are not captured by the standard model of electroconvection and which still need a theoretical explanation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.C. Cross and P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993).

    Article  ADS  Google Scholar 

  2. P.G de Gennes and J. Prost, The Physics of Liquid Crystals, Clarendon Press, Oxford, 1993.

    Google Scholar 

  3. S. Chandrasekhar, Liquid Crystals, University Press, Cambridge, 1992.

    Book  Google Scholar 

  4. Physical Properties of Liquid Crystals: Nematics, editors: D.A. Dunmur, A. Fukudaand G.R. Luckhurst, Inspec, London, 2001.

    Google Scholar 

  5. Pattern Formation in Liquid Crystals, editors: A. Buka and L. Kramer, Springer, New York, 1996.

    Google Scholar 

  6. W. Pesch and U. Behn, Electrohydrodynamic Convection in Nematics. In Evolution of Spontaneous Structures in Dissipative Continuous Systems, editors: F.H. Busse and S.C. Müller, pages 335–383, Springer, New York, 1998.

    Chapter  Google Scholar 

  7. L. Kramer and W. Pesch, Electrohydrodynamics in Nematics. In Physical Properties of Liquid Crystals: Nematics, editors: D.A. Dunmur, A. Fukuda and G.R. Luckhurst, pages 441-454, Inspec, London, 2001.

    Google Scholar 

  8. W. Pesch and L. Kramer, General Mathematical Description of Pattern-Forming Instabilities. In Pattern Formation in Liquid Crystals, editors: A. Buka and L. Kramer, pages 69-90, Springer, New York, 1996.

    Google Scholar 

  9. L.M. Blinov and V.G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials, Springer, New York, 1994.

    Google Scholar 

  10. H. Pleiner and H. Brandt, Hydrodynamics and Electrohydrodynamics of Liquid Crystals. In Pattern Formation in Liquid Crystals, editors: A. Buka and L. Kramer, pages 15–68, Springer, New York, 1996.

    Google Scholar 

  11. M. Born and E. Wolf, Principles of Optics, Pergamon, Oxford, 1996.

    Google Scholar 

  12. S. Rasenat, G. Hartung, B.L. Winkler and I. Rehberg, Exp. Fluids 7, 412 (1989).

    Article  Google Scholar 

  13. S. P. Trainoff and D. Canell, Physics of Fluids 14, 1340 (2002).

    Article  ADS  Google Scholar 

  14. N. Éber, S.A. Rozanski, Sz. Németh, Á. Buka, W. Pesch and L. Kramer, Phys. Rev. E 70, 61706 (2004).

    Article  Google Scholar 

  15. E. Bodenschatz, W. Pesch and G. Ahlers, Annu. Rev. Fluid Mech. 32, 709–778 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  16. L. Kramer and W. Pesch, Electrohydrodynamic Instabilities in Nematic Liquid Crystals. In Pattern Formation in Liquid Crystals, editors: A. Buka and L. Kramer, pages 221–255, Springer, 1996.

    Google Scholar 

  17. E.F. Carr, Mol. Cryst. Liq. Cryst. 7, 253 (1969).

    Article  Google Scholar 

  18. W. Helfrich, J. Chem. Phys. 51, 4092 (1969).

    Article  ADS  Google Scholar 

  19. E. Bodenschatz, W. Zimmermann and L. Kramer, J. Phys. (Paris) 49, 1875 (1988).

    Google Scholar 

  20. See equation (6.5) on p. 221 in [16]. Note that there I h=0.97267 has been replaced by one and that α 3/q22 has been approximated by α2.

    Google Scholar 

  21. Numerical codes for the linear analysis of the full standard model can be obtained upon request from the authors.

    Google Scholar 

  22. A. Joets and R. Ribotta, J. Phys. (Paris) 47, 595 (1986).

    Google Scholar 

  23. S. Kai, N. Chizumi and M. Kokuo, Phys. Rev. A 40, 6554 (1989).

    Article  ADS  Google Scholar 

  24. M. Dennin, M. Treiber, L. Kramer, G. Ahlers and D. Cannell, Phys. Rev. Lett. 76, 319 (1995).

    Article  ADS  Google Scholar 

  25. S. Rasenat, V. Steinberg and I. Rehberg, Phys. Rev. A 42, 5998 (1990).

    Article  ADS  Google Scholar 

  26. M. Treiber and L. Kramer, Phys. Rev. E 58, 1973 (1989).

    Article  ADS  Google Scholar 

  27. M. Treiber and L. Kramer, Mol. Cryst. Liq. Cryst. 261, 951 (1995).

    Article  Google Scholar 

  28. I. Rehberg, S. Rasenat and V. Steinberg, Phys. Rev. Lett. 62, 756 (1989).

    Article  ADS  Google Scholar 

  29. M. Treiber, N. Éber, Á. Buka and L. Kramer, J. Phys. II (Paris), 7, 649 (1997).

    Google Scholar 

  30. Á. Buka, B. Dressel, W. Otowski, K. Camara, T. Tóth-Katona, L. Kramer, J. Lindau, G. Pelzl and W. Pesch, Phys. Rev. E 66, 051713/1–8 (2002).

    Article  ADS  Google Scholar 

  31. See equation (6.29) on p.244 in [16], which has been rewritten. The definition of σ¯α in equation .

    Google Scholar 

  32. Á. Buka, B. Dressel, L. Kramer and W. Pesch, Phys. Rev. Lett. 93(4) 044502/1–4 (2004).

    Article  ADS  Google Scholar 

  33. Á. Buka, B. Dressel, L. Kramer and W. Pesch, Chaos 14, 793–802 (2004).

    Article  ADS  Google Scholar 

  34. L. Kramer, A. Hertrich and W. Pesch, Electrohydrodynamic Convection in Nematics: the Homeotropic Case. In Pattern Formation in Complex, Dissipative Systems, editor: S. Kai, pages 238–246, World Scientific, Singapore (1992).

    Google Scholar 

  35. A. Hertrich, W. Decker, W. Pesch and L. Kramer, Phys. Rev. E 58, 7355 (1998).

    Article  ADS  Google Scholar 

  36. A.G. Rossberg, N. Éber, Á. Buka and L. Kramer, Phys. Rev. E 61, R25 (2000).

    Article  ADS  Google Scholar 

  37. S. Kai, K. Hayashi and Y. Hidaka, J. Phys. Chem. 100, 19007 (1996).

    Article  Google Scholar 

  38. Y. Hidaka, J.-H. Huh, K. Hayashi, M. Tribelsky and S. Kai, J. Phys. Soc. Jpn. 66, 3329 (1997).

    Article  ADS  Google Scholar 

  39. P. Tóth, Á. Buka, J. Peinke and L. Kramer, Phys. Rev. E 58, 1983 (1998).

    Article  ADS  Google Scholar 

  40. H. Richter, N. Kloepper, A. Hertrich and Á. Buka, Europhys. Lett. 30, 37 (1995).

    Article  ADS  Google Scholar 

  41. H. Richter, Á. Buka and I. Rehberg, Phys. Rev. E 51, 5886 (1995).

    Article  ADS  Google Scholar 

  42. P. Tóth, N. Éber, T.M. Bock, Á. Buka and L. Kramer, Europhys. Lett. 57, 824 (2002).

    Article  ADS  Google Scholar 

  43. Á. Buka, P. Tóth, N. Éber and L. Kramer, Physics Reports 337, 157 (2000).

    Article  ADS  Google Scholar 

  44. B. Dressel and W. Pesch, Phys. Rev. E. 67, 031707 (2003).

    Article  ADS  Google Scholar 

  45. B. Dressel, L. Pastur, W. Pesch, E. Plaut and R. Ribotta, Phys. Rev. Lett. 88, 024503 (2002).

    Article  ADS  Google Scholar 

  46. S. Kai and K. Hirakawa, Solid State Commun. 18, 1573 (1976).

    Article  ADS  Google Scholar 

  47. P. Petrescu and M. Giurgea, Phys. Lett. 59A, 41 (1976).

    ADS  Google Scholar 

  48. A.N. Trufanov, M.I. Barnik and L.M. Blinov, A Novel Type of the Electrohydrodynamic Instability in Nematic Liquid Crystals. in Advances in Liquid Crystal Research and Application, editor: L. Bata, pages 549–560, Akadémiai Kiadó - Pergamon Press (1980).

    Google Scholar 

  49. J.-H. Huh, Y. Yusuf, Y. Hidaka, and S. Kai, Mol. Cryst. Liq. Cryst. 410, 39 (2004).

    Article  Google Scholar 

  50. J.-H. Huh, Y. Hidaka, Y. Yusuf, N. Éber, T. Tóth-Katona, Á. Buka and S. Kai, Mol. Cryst. Liq. Cryst. 364, 111 (2001).

    Article  Google Scholar 

  51. J.-H. Huh, Y. Hidaka, A.G. Rossberg and S. Kai, Phys. Rev. E 61, 2769 (2000).

    Article  ADS  Google Scholar 

  52. M. Goscianski and L. Léger, J. Phys. (Paris) 36, N.3, C1–231 (1975).

    Article  Google Scholar 

  53. L.M. Blinov, M.I. Barnik, V.T. Lazareva and A.N. Trufanov, J. Phys. (Paris) 40, N.4, C3–263 (1979).

    Google Scholar 

  54. E. Kochowska, S. Németh, G. Pelzl and Á. Buka, Phys. Rev. E 70, 011711 (2004).

    Article  ADS  Google Scholar 

  55. N.V. Madhusudana and V.A. Raghunathan, Mol. Cryst. Liq. Cryst. Lett. 5, 201 (1988).

    Google Scholar 

  56. N.V. Madhusudana and V.A. Raghunathan, Liquid Crystals, 5, 1789 (1989).

    Article  Google Scholar 

  57. M.I. Barnik, L.M. Blinov, A.N. Trufanov and B.A. Umanski, J. Phys. (Paris) 39, 417–422 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Buka, A., Éber, N., Pesch, W., Kramer, L. (2006). CONVECTIVE PATTERNS IN LIQUID CRYSTALS DRIVEN BY ELECTRIC FIELD. In: Golovin, A.A., Nepomnyashchy, A.A. (eds) Advances in Sensing with Security Applications. NATO Science Series II: Mathematics, Physics and Chemistry, vol 218. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4355-4_02

Download citation

Publish with us

Policies and ethics