Skip to main content

Design and Construction of Artificial Blood Vessels

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metallo- proteinases: structure, function, and biochemistry. Circ Res, 92: 827-839, 2003.

    Article  CAS  PubMed  Google Scholar 

  2. Eagle K, Guyton RA, Davidoff R, Ewy GA, Fonger J, Gardner TJ, Gott JP, Hermann HC, Marlow RA, Nugent WC, O’Connor GT, Orszulak TA, Rieselbach RE, Winters WL, Yusuf S. ACC/AHA guidelines for coronary artery bypass graft surgery. J Am Coll Cardiol, 34: 1262-1347, 1999.

    Article  CAS  PubMed  Google Scholar 

  3. Rosenman JE, Kempczinski RF, Pearce WH, Silberstein EB. Kinetics of endothelial cell seeding. J Vasc Surg, 2: 778-784, 1985.

    Article  CAS  PubMed  Google Scholar 

  4. Kao WJ. Evaluation of leukocyte adhesion on polyurethanes: the effects of shear stress and blood proteins. Biomaterials, 21: 2295-2303, 2000.

    Article  CAS  PubMed  Google Scholar 

  5. Mikuki SA, Greisler H. Understanding and manipulating the biological response to vascular implants. Semin Vasc Surg, 12: 18-26, 1999.

    Google Scholar 

  6. Herring M. A single-staged technique for seeding vascular grafts with autogenous endothelium. Surgery, 84: 498-504, 1978.

    CAS  PubMed  Google Scholar 

  7. Herring M, Gardner A, Glover J. Seeding endothelium onto canine arterial prostheses. The effects of graft design. Arch Surgery, 114: 679-682, 1979.

    CAS  Google Scholar 

  8. Herring MB, Dilley R, Jersild RA Jr, Boxer L, Gardner A, Glover J. Seeding arterial prostheses with vascular endothelium. The nature of the lining. Ann Surg, 190: 84-90, 1979.

    CAS  Google Scholar 

  9. Ott M, Ballermann BJ. Shear stress-conditioned, endothelial cell-seeded vascular grafts improved cell adhesion adherence in response to in vitro shear stress. Surgery, 117: 334-339, 1995.

    Article  CAS  PubMed  Google Scholar 

  10. Foxall TL, Auger KR, Callow AD, Libby P. Adult human endothelial cell coverage of small-caliber Dacron and polytetrafluoroethylene vascular prostheses in vitro. J Surg Res, 41: 158-172, 1986.

    Article  CAS  PubMed  Google Scholar 

  11. Zilla P, Fasol R, Preiss P, Kadletz M, Deutsch M, Schima H, Tsangaris S, Groscurth P. Use of fibrin glue as a substrate of PTFE vascular grafts. Surgery, 105: 512-522, 1989.

    Google Scholar 

  12. Thomson GJ, Vohra RK, Carr MH, Walker MG, 1991. Adult human endothelial cell coverage of small-caliber dacron and polytetrafluoroethylene vascular grafts: a comparison of four substrates. Surgery, 109: 20-27, 1991.

    CAS  PubMed  Google Scholar 

  13. Cheresh DA. Human endothelial cells synthesize and express an Arg-Gly-Asp directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proc Natl Acad Sci USA, 94: 6471-6475, 1987.

    Article  Google Scholar 

  14. Holland J, Hersh L, Bryham M, Onyiriuka E, Ziegler L. Culture of human vascular endothelial cells on a RGD-containing synthetic peptide attached to a starch-coated polystyrene surface: comparison with fibronectin-coated tissue grade polystyrene. Biomaterials, 17: 2147-2156, 1996.

    Article  CAS  PubMed  Google Scholar 

  15. Hubbell JA, Massia SP, Desai NP, Drumheller PD. Endothelial cell-selective materials for tissue engineering in the vascular graft via a new receptor. Biotechniques, 9: 568-573, 1991.

    Article  CAS  Google Scholar 

  16. Massia SP, Hubbell JA. Vascular endothelial cell adhesion and spreading promoted by the peptide REDV of the IIICS region of plasma fibronectin is mediated by integrin α4β1. J Biol Chem, 267: 14019-14026, 1992.

    CAS  PubMed  Google Scholar 

  17. Tiwari A, Salacinski HJ, Punshon G, Hamilton G, Seifalian AM. Development of a hybrid cardiovascular graft using a tissue engineering approach. FASEB J, 16: 791-796, 2002.

    Article  CAS  PubMed  Google Scholar 

  18. Edelman ER. Vascular tissue engineering: designer arteries. Circ Res, 85: 1115-1117, 1999.

    CAS  PubMed  Google Scholar 

  19. Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science, 231: 397-400, 1986.

    Article  CAS  PubMed  Google Scholar 

  20. Shinoka AT, Shum-Tim D, Ma PX, Tanel RE, Isogai N, Langer R, Vacant JP, Mayer JE Jr. Creation of viable pulmonary artery autografts through tissue engineering. J Thorac Cardiovasc Surg, 115: 536-545, 1998.

    Article  CAS  PubMed  Google Scholar 

  21. Shin’oka AT, Imai Y, Ikada Y. Transplantation of a tissue-engineered pulmonary artery. New Engl J Med, 344:532-3, 2001.

    Article  PubMed  Google Scholar 

  22. Matsumura G, Hibino N, Ikada Y, Kurosawa H, Shin’oka T. Successful application of tissue engineered vascular autografts: clinical experience. Biomaterials 24:2303-2308, 2003.

    Article  CAS  PubMed  Google Scholar 

  23. Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R. Functional arteries growth in vitro. Science 284: 489-493, 1999.

    Article  CAS  PubMed  Google Scholar 

  24. Opitz F, Schenke-Layland K, Ritcher W, Martin DP, Degenkolbe I, Wahlers T, Stock UA. Tissue engineering of bovine aortic blood vessel substitutes using applied shear stress and enzymatically derived vascular smooth muscle cells. Annals of Biomedical Engineering, 32:212-22, 2004.

    Article  CAS  PubMed  Google Scholar 

  25. Opitz F, Schenke-Layland K, Cohnert TU, Starcher B, Halbhuber KJ, Martin DP, Stock UA. Tissue engineering of aortic tissue: direct consequence of suboptimal elastic fiber synthesis in vivo. Cardiovasc. Res. 63:719-730, 2004.

    Article  CAS  PubMed  Google Scholar 

  26. Campbell JH, Efendy JL, Campbell GR. Novel vascular graft grown within recipient’s own peritoneal cavity. Circ Res, 85: 1173-1178, 1999.

    CAS  PubMed  Google Scholar 

  27. Xu CY, Inai R, Kotaki M, Ramakrishna S. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel enginnering. Biomaterials 25:877-886, 2004.

    Article  CAS  PubMed  Google Scholar 

  28. Zisch AH, Schenk U, Schense JC, Sakiyama-Elbert SE, Hubbell JA. Covalently conjugated VEGF-fibrin matrices for endothelialization. J Controlled Release, 72: 101-113, 2001.

    Article  CAS  Google Scholar 

  29. L’Heureux N, Paquet S, Labbé R, Germain L, Auger FA. A completely biological tissue-engineered human blood vessel. FASEB J, 12: 47-56, 1998.

    PubMed  Google Scholar 

  30. Barone LM, Faris B, Chipman SD, Toselli P, Oakes BW, Franzblau C. Alteration of the extracellular matrix of smooth muscle cells by ascorbate treatment. Biochim Biophys Acta, 840: 245-254, 1985.

    CAS  PubMed  Google Scholar 

  31. Jackson RL, Busch SJ, Cardin AD. Glycosaminoglycans: molecular properties, protein interactions and role in physiological processes. Physiol Rev, 71: 481-539, 1991.

    CAS  PubMed  Google Scholar 

  32. Courtmann DW, Errett BF, Wilson GJ. The role of crosslinking in modifications of the immune response elicited against xenogenic vascular acellular matrices. J Biomed Mater Res, 55: 576-586, 2001.

    Article  Google Scholar 

  33. Wilson FJ, Yeger H, Klement P, Lee JM, Courtmant DW. Acellular matrix allograft small caliber vascular prostheses. ASAIO Trans, 36: M340-M343, 1990.

    CAS  PubMed  Google Scholar 

  34. Bader A, Steinhoff G, Strobl K, Schilling T, Brandes G, Mertsching H, Tsikas D, Froelich J, Havenich A. Engineering of human vascular aortic tissue based on a xenogenic starter matrix. Transplantation, 70: 7-14, 2000.

    CAS  PubMed  Google Scholar 

  35. Huynh T, Abraham G, Murray Y, Brockbank K, Hagen PO, Sullivan S. Remodeling of an acellular collagen graft into a physiologically responsive neovessels. Nature Biotechnol, 17: 1083-1086, 1999.

    Article  CAS  Google Scholar 

  36. Remy-Zolghadri M, Laganiere J, Oligny JF, Germain L, Auger FA. Endothelium properties of a tissue-engineered blood vessel for small-diameter vascular reconstruction. J. Vasc. Surg. 39: 613-620, 2004.

    Article  PubMed  Google Scholar 

  37. Leung DYM, Glagow S, Mathews MB. Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science, 191: 475-477, 1976.

    Article  CAS  PubMed  Google Scholar 

  38. Varga J, Rosenbloom J, Jimenez SA. Transforming growth factor β (TGFβ) causes a persistent increase in steady-state amounts of type I and type III collagen and fibronectin mRNAs in normal human dermal fibroblasts. Bicohem J, 247: 597-604, 1987.

    CAS  Google Scholar 

  39. Geesin JC, Darr D, Kaufman R, Murad S, Pinnel SR. Ascorbic acid specifically increases type I and type III procollagen messanger RNA levels in human skin fibroblasts. J Invest Dermatol, 90: 420-424, 1988.

    Article  CAS  PubMed  Google Scholar 

  40. Eyre D. Cross-linking in collagen and elastin. Annu Rev Biochem 34: 1262-1347, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Ribatti, D., Nico, B., Weber, E. (2006). Design and Construction of Artificial Blood Vessels. In: Forough, R. (eds) New Frontiers in Angiogenesis. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4327-9_6

Download citation

Publish with us

Policies and ethics