Skip to main content

MULTIFUNCTION SMART COATINGS FOR SPACE APPLICATIONS

  • Conference paper

Part of the book series: Space Technology Proceedings ((SPTP,volume 6))

Abstract

This paper describes a new multifunction smart coating that can provide atomic oxygen (AO) and electrostatic discharge (ESD) protection, while also improving the thermal control of space structures. The methodology is based on a passive thin-film structure employing VO n transition metal oxides that exhibit a metal to insulator transition. The coating, depending on its formulation, can provide a variable heat-transfer/emitter structure that operates passively in response to changes in the temperature of the space structure, by dynamically varying the ratio of solar absorptance (α) to thermal emittance (ε). This enhances self-heating of the structure at lower temperatures and cooling through thermal radiation at elevated temperatures. Work is currently underway to apply this coating to various polymers and membranes to improve their performance in space.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Whitaker, A. F. and Gregory, J. (1993) LDEF Materials Results for Spacecraft Applications, Reports: N-94–31012; NASA-CP–3257; M–742; NAS-1.55:3257; CONF-9210467.

    Google Scholar 

  2. Silverman, E. M. (1995) Space Environmental Effects on Spacecraft: LEO Materials Selection Guide, NASA CR-4661.

    Google Scholar 

  3. Tennyson, R. C. and Morison, W. D. (1990) In Proceedings TMS Symposium on Space Environmental Effects on Materials, Anaheim, CA, February 1990.

    Google Scholar 

  4. Gilmore, D. G. (1994) Satellite Thermal Control Handbook, The Aerospace Corporation Press, El Segundo, CA.

    Google Scholar 

  5. Mahan, B. A. (1975) University Chemistry, 3rd ed., Addison-Wesley Publishing, Reading, MA, USA, pp. 685–743.

    Google Scholar 

  6. Kruzelecky, R. V., Haddad, E., Jamroz, W., Soltani, M., Chaker, M., Nikanpour, D., and Jiang, X. X. (2003) In the 33nd International Conference on Environmental System 33-IES, Paper 03ICES-242, Vancouver, Canada, July 2003.

    Google Scholar 

  7. Shimakawa, Y., Yoshitake, T., Kubo, Y., Machida, T., Shinagawa, K., Okamoto, A., Nakamura, Y., Ochi, A., Tachikawa, S., and Ohnishi, A. (2002) Applied Physics Letters 80, 4864–4866.

    Article  Google Scholar 

  8. Franke, E., Neumann, H., Schubert, M., Trimble, C. L., Yan, L.,Woollam, J. A. (2002) Surface and Coating Technology 151–152, 285–288.

    Article  Google Scholar 

  9. Douglas, D. T., Swanso, R., Osiander, J., Champion, J., Darrin, A. G., Biter, W., and Chandrasekha, P. (2002) In M. El-Glenk (ed.) Space Technology and Applications International Forum (STAIF)-2002, CP 608, American Institute of Physics, pp. 204–210.

    Google Scholar 

  10. Griffiths, C. H. and Eastwood, H. K. (1974) Journal of Applied Physics 45, 2201–2206.

    Article  Google Scholar 

  11. Egorov, F. A., Yu. Sh. Temirov, Dvoryankin, V. F., Potapov, V. T., and Sokolovskii, A. A. (1991) Sov. Tech. Phys. Lett. 17, 295–296.

    Google Scholar 

  12. Stefanovich, G., Pergament, A., and Stefanovich, D. (2000) Journal of Physics. Condensed Matter 12, 8837–8845.

    Article  Google Scholar 

  13. ASTM-E-490. Version SOLAR2000, Model AM0 (Solar irradiance, Air mass zero, distance of 1 A.U.) rredc.nrel.gov/solar/standards/am0/wehrli1985.new.html.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

KRUZELECKY, R.V. et al. (2006). MULTIFUNCTION SMART COATINGS FOR SPACE APPLICATIONS. In: Kleiman, J.I. (eds) PROTECTION OF MATERIALS AND STRUCTURES FROM THE SPACE ENVIRONMENT. Space Technology Proceedings, vol 6. Springer, Dordrecht . https://doi.org/10.1007/1-4020-4319-8_25

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4319-8_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4281-2

  • Online ISBN: 978-1-4020-4319-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics