Skip to main content

THE EFFECT OF IRON IONS AND WEAK STATIC OR LOW FREQUENCY (50 HZ) MAGNETIC FIELDS ON LYMPHOCYTES: FREE RADICAL PROCESSES

  • Conference paper
BIOELECTROMAGNETICS Current Concepts

Part of the book series: NATO Security Through Science Series ((NASTB,volume 5))

Abstract

The aim of the work is to present our observations and suggestions that changes in the oxidative processes and number of free oxygen radicals in cells affected by the iron ions and weak static or power frequency magnetic fields (MF) could be qualitatively explained by the radical pair mechanism. The experiments were performed on rat lymphocytes. Exposures to static or 50 Hz MF were performed inside a pair of Helmholtz coils. Iron ions (FeCl2) were used as a stimulator of the oxidation processes. Oxygen radicals were measured by fluorimetry using a DCF-DA fluorescent probe. The alkaline comet assay was chosen for the assessment of DNA damage. During pre-incubation, a portion of the cell samples were supplemented with melatonin (0.5 or 1.0 mM) or trolox (0.1 mM). For studying cell death and morphological changes in the nucleus, we used dye exclusion method with DNA-fluorochromes: ethidium bromide and acridine orange. A decrease of fluorescence in relation to nonexposed samples occurred in the lymphocytes exposed to 40 μT MF (only when axis of Helmholtz coils was directed along Earth's static MF). In the lymphocytes exposed to 50 Hz MF at 7 mT flux density, there was an increase of fluorescence in relation to non-exposed samples, the effect opposite to that observed in 40 μT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlbom, I.C., Cardis, E., Green, A., Linet, M., Savitz, D., Swerdlow, A.; 2001, ICNIRP (International Commission for Non-Ionizing Radiation Protection) Standing Committee on Epidemiology. Review of the epidemiologic literature on EMF and Health,. Environ. Health Perspect. 6 :911–33.

    Google Scholar 

  • Anderson, D., Yu, T.W., Phillips, B.J., Schmezer, P., 1994, The effect of various antioxidants and other modifying agents on oxygen-radical-generated DNA damage in human lymphocytes in the Comet assay, Mutat. Res. 307 :261–271.

    PubMed  CAS  Google Scholar 

  • Brocklehurst, B., 1969,. Formation of excited states by recombining organic ions,. Nature, 221: 921–923.

    CAS  Google Scholar 

  • Brocklehurst, B., 1976,. Spin correlation in the geminate recombination of radical ions in hydrocarbons,. Part 1. Theory of the magnetic field effect. J. Chem. Soc., Faraday Trans. 72: 1864–1869.

    Google Scholar 

  • Brocklehurst, B. and McLauchlan, K.A., 1996, Free radical mechanism for the effects of environmental electromagnetic fields on biological systems,. Int. J. Radiat. Biol. 16: 3–24.

    Google Scholar 

  • Devevey, L., Brugere, H., Debray, M., Bernard, M., Pupin, F., Patinot, C., Jacquemont, C., Guillosson, J.J., Nafziger, J. 2000, Can 50 Hz magnetic fields alter iron metabolism and induce anaemia?, Int. J. Radiat. Biol. 76(12) :1669–76.

    PubMed  CAS  Google Scholar 

  • Eveson, R.W., Timmel, C.R., Brocklehurst, B., Hore, P.J. and McLauchlan, K.A., 2000, The effects of weak magnetic fields on radical recombination reactions in micelles, Int. J. Radiat. Biol. 76: 1509–1522.

    PubMed  CAS  Google Scholar 

  • Grissom, Ch.B., 1995, Magnetic field effects in biology: a survey of possible mechanisms with emphasis on radical-pair recombination, Chem. Rev95 :(1995) 3-24.

    CAS  Google Scholar 

  • Habash, R.W., Brodsky, L.M., Leiss, W., Krewski, D., Repacholi, M., 2003, Health risks of electromagnetic fields. Part I: Evaluation and assessment of electric and magnetic fields,. Crit. Rev. Biomed. Eng. 31(3): 141–95.

    PubMed  Google Scholar 

  • Jajte, J., 1997, Chemical-induced changes in intracellular redox state and in apoptosis, Int. J. Occupat. Med. Environ. Health 10: 203–212.

    CAS  Google Scholar 

  • Jajte, J., Zmyslony, M., Palus, J., Dziubaltowska, E., Rajkowska, E., 2001a, Protective effect of melatonin against in vitro iron ions and 7 mT 50 Hz magnetic field-induced DNA damage in rat lymphocytes, Mutat. Res. 483: 57–64.

    CAS  Google Scholar 

  • Jajte, J., Grzegorczyk, J., Zmyslony, M., Rajkowska, E., Sliwinska-Kowalska, M., Kowalski, M.L., 2001b, Influence of a 7 mT static magnetic field and iron ions on apoptosis and necrosis in rat blood lymphocytes, J. Occup. Health 43: 379–381.

    Article  CAS  Google Scholar 

  • Jajte, J., Grzegorczyk, J., Zmyslony, M., Rajkowska, E., 2002, Effect of 7 mT static magnetic field and iron ions on rat lymphocytes: apoptosis, necrosis and free radical processes, Bioelectrochemistry 57: 107–111.

    Article  PubMed  CAS  Google Scholar 

  • Jajte, J., Zmyslony M., Rajkowska E., 2003, Protective effect of melatonin and witamin E against prooxidative action of iron ions and static magnetic field, Med. Pracy 54(1): 23–28.

    CAS  Google Scholar 

  • Lai, H., Singh, N.P.,1997a, Acute exposure to a 60-Hz magnetic field increases DNA strand breaks in rat brain cells, Bioelectromagnetics 18: 156–165.

    CAS  Google Scholar 

  • Lai, H., Singh, N.P., 1997b, Melatonin and N-tert-butyl-α-phenylnitrone blocked 60-Hz magnetic field-induced DNA single and double strand breaks in rat brain cells, J. Pineal Res. 22: 152–162.

    CAS  Google Scholar 

  • Lalo, U.V., Pankratov, Y.O. and Mikhailik, O.M., 1994,. Steady magnetic fields effect on lipid peroxidation kinetics,. Redox Report, 1: 71–75.

    CAS  Google Scholar 

  • McLauchlan, K.A., Steiner, U.E., 1991, The spin correlated radical pair as a reaction intermediate, Mol. Phys. 73(2): 241–263.

    CAS  Google Scholar 

  • Meneghini, R., 1997, Iron homeostasis, oxidative stress, and DNA damage, Free Radical Biol. Med. 23: 783–792.

    Article  CAS  Google Scholar 

  • Pieri, C., M. Marra, M., F. Moroni, F., R. Recchioni, R., F. Marcheselli, F., 1994, Melatonin: a peroxyl radical scavenger more effective than vitamin E, Life Sci. 55: PL271-PL276.

    Article  PubMed  CAS  Google Scholar 

  • Polk, C., 1992. Dosimetry of extremely-low-frequency magnetic fields. Bioelectromagnetics Suppl 1: 209–235.

    Google Scholar 

  • Pryor, W.A., 1986, Oxy-radicals and related species: their formation, lifetimes, and reactions, Ann. Rev. Physiol 48: 657–667.

    Article  CAS  Google Scholar 

  • Reiter, R.J., D. Melchiorri, D.,E. Sewerynek, E.,B. Poeggeler, B., L.R. Barlow-Walden, L.R.,S.H. Chuang, S.H.,G.G. Ortiz, G.G.,D. Acuna-Castroviejo, G., 1995, A review of the evidence supporting melatonin's role as an antioxidant, J. Pineal Res. 18:(1995) 1–11.

    PubMed  CAS  Google Scholar 

  • Repacholi, M.H., Greenebaum, B., 1999, Interaction of static and extremely low frequency electric and magnetic fields with living systems: Health effects and research needs, Bioelectromagnetics 20: 133–148.

    Article  PubMed  CAS  Google Scholar 

  • Salikhov, K.M., 1983, On the largest possible contribution from hyperfine interactions to the recombination probability of radical pairs, Chem. Phys. 82: 163–169.

    CAS  Google Scholar 

  • Sarafian, T.A., and Bredesen, D.E., 1994, Is apoptosis mediated by reactive oxygen species?, Free Rad. Res. 21: 1–8.

    CAS  Google Scholar 

  • Savitz, D.A., 1995, Overview of occupational exposure to electric and magnetic fields and cancer: Advancements in exposure assessment, Environ. Health Perspect,. 103: 69–75.

    PubMed  Google Scholar 

  • Sciano, J.C., Mohtat, N., Cozens, F.L., McLean, J. and Thansandote, A., 1994, Application of the radical pair mechanism to free radicals in organized systems: Can the effects of 60 Hz be predicted from studies under static fields? Bioelectromagnetics 15: 549–554.

    Google Scholar 

  • Silva, L.R., Albano, F., Santos, L.R., Tavares, A.D., Felzenszwalb, I., 2000, The effect of electromagnetic field exposure on the formation of DNA lesions,. Redox Rep. 5(5):299–301.

    Google Scholar 

  • Singh, N.P., Mokoy, M.T., Tice, R.R., Schneider, E.L., 1988, A simple technique for quantitation of low levels of damage in individual cells, Exp. Cell Res. 175: 184–191.

    PubMed  CAS  Google Scholar 

  • Singh, N.P., Lai, H., 1998, 60 Hz magnetic field exposure induces DNA crosslinks in rat brain cells, Mutat. Res. 400: 313–320.

    PubMed  CAS  Google Scholar 

  • Steiner, U.E., and Ulrich, T., 1989, Magnetic field effects in chemical kinetics and related phenomena. Chem. Rev. 89: 51–147.

    Article  CAS  Google Scholar 

  • Stohs, S.J., Bagchi, D., 1996, Oxidative mechanisms in the toxicity of metal ions, Free Radical Biol. Med. 18: 321–336.

    Google Scholar 

  • Sun, Y., 1990, Free radicals, antioxidant enzymes, and carcinogenesis, Free Rad. Biol. Med. 8: 583–588.

    Article  PubMed  CAS  Google Scholar 

  • Vijayalaxmi, Reiter, R.J., Herman, T.S., Meltz, M.L., 1998, Melatonin reduces gamma radiationinduced primary DNA damage in human blood lymphocytes, Mutat. Res. 397: 203–208.

    PubMed  CAS  Google Scholar 

  • WHO, 1987, Environmental Health Criteria, Magnetic fields, 69

    Google Scholar 

  • Wolf, F.I., Torsello, A., Tedesco, B., Fasanella S, Boninsegna, A., D'Ascenzo, M., Grassi, C., Azzena, G.B., Cittadini, A., 2005, 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism. Biochim Biophys Acta 22:1743(1-2): 120–9.

    Google Scholar 

  • Zang, L.Y., G. Cosma, G.,H. Gardner, H., V. Vallyathan, V., 1998, Scavenging of reactive oxygen species by melatonin, Biochim. Biophys. Acta. 1425: 469–476.

    PubMed  CAS  Google Scholar 

  • Zmyslony, M., Jajte, J., Rajkowska, E. and Szmigielski, S., 1998, Weak (5 mT) static magnetic field stimulates lipid peroxidation in isolated rat liver microsomes in vitro, Electro and Magnetobiology 17: 109–113.

    CAS  Google Scholar 

  • Zmyslony, M., Palus, J., Jajte, J., Dziubaltowska, E., Rajkowska, E., 2000, DNA damage in rat lymphocytes treated in vitro with iron cations and exposed to 7 mT magnetic fields (static or 50 Hz), Mutat. Res. 453: 89–96.

    PubMed  CAS  Google Scholar 

  • Zmyslony, M., Rajkowska, E., Mamrot, P., Politañski, P., Jajte, J., 2004, The effect of weak 50 Hz magnetic fields on the number of free oxygen radicals In rat lymphocytes In vitro, Bioelectromagnetics 25: 607–612.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

JAJTE, J., ZMYSLONY, M. (2006). THE EFFECT OF IRON IONS AND WEAK STATIC OR LOW FREQUENCY (50 HZ) MAGNETIC FIELDS ON LYMPHOCYTES: FREE RADICAL PROCESSES. In: Ayrapetyan, S.N., Markov, M.S. (eds) BIOELECTROMAGNETICS Current Concepts. NATO Security Through Science Series, vol 5. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4278-7_09

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4278-7_09

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4276-8

  • Online ISBN: 978-1-4020-4278-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics