Skip to main content

INTRACELLULAR CALCIUM SIGNALING – BASIC MECHANISMS AND POSSIBLE ALTERATIONS

  • Conference paper

Part of the book series: NATO Security Through Science Series ((NASTB,volume 5))

Abstract

The main property of neuronal and other excitable cells is their capability to transform excitatory waves into intracellular signals, where they trigger or modulate practically all cellular functions. Influx of calcium ions from the extracellular medium (“calcium signals„) plays a key role in this process. Correspondingly alterations in intracellular calcium signaling are an important component of the physiological process of aging and of the most frequent and complicated forms of pathology, and their clarification is of basic medical importance. Therefore in the present paper we will discuss the main molecular mechanisms determining such signaling as well as their possible alterations

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, Y., Sorimachi, M., Itoyama, Y., Furukawa, K., Akaike, N., 1995. ATP responses in the embryo chick ciliary ganglion cells. Neurosc. 64:547–551.

    CAS  Google Scholar 

  • Andreeva, N., Khodorov, B., Stelmashook, E., Cragoe, E, Jr., Victorov, I., 1991, Inhibition of Na+/Ca2+ exchange enhances delayed neuronal death elicited by glutamate in cerebellar granule cell cultures. Brain Res. 548:322–325.

    Article  PubMed  CAS  Google Scholar 

  • Aramori, I., Nakanishi, S., 1992, Signal transduction and pharmacological characteristics of a metabotropic glutamate receptor, mGluR1, in transfected CHO cells. Neuron 8:757–765.

    Article  PubMed  CAS  Google Scholar 

  • Augustine, G.J., Neher, E., 1992, Neuronal Ca2+ signalling takes the local route. Current Opinion In Neurobiology 2:302–307.

    Article  PubMed  CAS  Google Scholar 

  • Bean, B.P., 1992, Pharmacology and electrophysiology of ATP-activated ion channels. Trends in Pharmacological Sciences 13:87–90.

    Article  PubMed  CAS  Google Scholar 

  • Belan, P.V., Kostyuk, P.G., Snitsarev, V.A., Tepikin, A.V., 1993, Calcium clamp in single nerve cells. Cell Calcium, 14:419–425.

    Article  PubMed  CAS  Google Scholar 

  • Bernardi, P., 1992, Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by the proton electrochemical gradient. Evidence that the pore can be opened by membrane depolarization. Journal of Biological Chemistry, 267:8834–8839.

    PubMed  CAS  Google Scholar 

  • Bian, X., Hughes, F.M., Jr., Huang, Y., Cidlowski, J.A., Putney, J.W., Jr., 1997, Roles of cytoplasmic Ca2+ and intracellular Ca2+ stores in induction and suppression of apoptosis in S49 cells. Am.J.Physiol, 272:C1241-C1249.

    PubMed  CAS  Google Scholar 

  • Birch, B.D., Eng, D.L., Kocsis, J.D., 1992, Intranuclear Ca2+ transients during neurite regeneration of an adult mammalian neuron. Proc.Natl.Acad.Sci.U.S.A 89:7978–7982.

    PubMed  CAS  Google Scholar 

  • Blaustein, M.P., Goldman, W.F., Fontana, G., Krueger, B.K., Santiago, E.M., Steele, T.D., Weiss, D.N., Yarowsky, P.J., 1991. Physiological roles of the sodium-calcium exchanger in nerve and muscle. Annals of the New York Academy of Sciences, 639:254–274.

    PubMed  CAS  Google Scholar 

  • Bormann, J., 1988, Electrophysiology of GABAA and GABAB receptor subtypes. Trends in Neurosciences 11:112–116.

    Article  PubMed  CAS  Google Scholar 

  • Carbone, E., Lux, H.D., 1984, A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature, 310:501–502.

    PubMed  CAS  Google Scholar 

  • Chard, P.S., Bleakman, D., Christakos, S., Fullmer, C.S., Miller, R.J., 1993. Calcium buffering properties of calbindin D28k and parvalbumin in rat sensory neurones. J.Physiol, 472:341–357.

    PubMed  CAS  Google Scholar 

  • Chavis, P., Fagni, L., Lansman, J.B., Bockaert, J., 1996, Functional coupling between ryanodine receptors and L-type calcium channels in neurons. Nature, 382:719–722.

    Article  PubMed  CAS  Google Scholar 

  • Cheek, T.R., 1989. Spatial aspects of calcium signalling. Journal of Cell Science, 93( Pt 2):211–216.

    PubMed  Google Scholar 

  • Chen, Z.P., Levy, A., Lightman, S.L., 1994, Activation of specific ATP receptors induces a rapid increase in intracellular calcium ions in rat hypothalamic neurons. Brain Research, 641:249–256.

    Article  PubMed  CAS  Google Scholar 

  • Cherubini, E., Gaiarsa, J.L., Ben, A.Y., 1991, GABA: an excitatory transmitter in early postnatal life. Trends in Neurosciences, 14:515–519.

    Article  PubMed  CAS  Google Scholar 

  • Clapham, D.E., 2002, Sorting out MIC, TRP, and CRAC ion channels. J.Gen.Physiol, 120:217–220.

    PubMed  CAS  Google Scholar 

  • Connor, J.A., Miller, L.D., Petrozzino, J., Muller, W., 1994, Calcium signaling in dendritic spines of hippocampal neurons. Journal of Neurobiology, 25:234–242.

    PubMed  CAS  Google Scholar 

  • De Jongh, K.S., Colvin, A.A., Wang, K.K., Catterall, W.A., 1994, Differential proteolysis of the full-length form of the L-type calcium channel alpha 1 subunit by calpain. Journal of Neurochemistry, 63:1558–1564.

    PubMed  Google Scholar 

  • Dolphin, A.C., Scott, R.H., 1990, Modulation of neuronal calcium currents by G protein activation. Soc.Gen.Physiol Ser, 45:11–27.

    PubMed  CAS  Google Scholar 

  • Duchen, M.R., Valdeolmillos, M., O'Neill, S.C., Eisner, D.A., 1990. Effects of metabolic blockade on the regulation of intracellular calcium in dissociated mouse sensory neurones. J.Physiol, 424:411–426.

    PubMed  CAS  Google Scholar 

  • Emptage, N.J., Reid, C.A., Fine, A., 2001. Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter release. Neuron, 29:197–208.

    Article  PubMed  CAS  Google Scholar 

  • Fedulova, S.A., Kostyuk, P.G., Veselovsky, N.S., 1985, Two types of calcium channels in the somatic membrane of new-born rat dorsal root ganglion neurones. Journal of Physiology, London 359:431–446.

    CAS  Google Scholar 

  • Friel, D.D., Tsien, R.W., 1992, A caffeine- and ryanodine-sensitive Ca2+ store in bullfrog sympathetic neurones modulates effects of Ca2+ entry on [Ca2+]i. J.Physiol, 450:217–246.

    PubMed  CAS  Google Scholar 

  • Friel, D.D., Tsien, R.W., 1994, An FCCP-sensitive Ca2+ store in bullfrog sympathetic neurons and its participation in stimulus-evoked changes in [Ca2+]i. Journal of Neuroscience,14:4007–4024.

    PubMed  CAS  Google Scholar 

  • Ganitkevich, V.Y., Isenberg, G., 1992, Caffeine-induced release and reuptake of Ca2+ by Ca2+ stores in myocytes from guinea-pig urinary bladder. J.Physiol 458:99–117.

    PubMed  CAS  Google Scholar 

  • Gerschenfeld, H.M., Paupardin-Tritsch, D., Yakel, J.L., 1991, Muscarinic enhancement of the voltage-dependent calcium current in an identified snail neuron. J.Physiol, 434:85–105.

    PubMed  CAS  Google Scholar 

  • Gilabert, J.A., Parekh, A.B., 2000, Respiring mitochondria determine the pattern of activation and inactivation of the store-operated Ca(2+) current I(CRAC). Embo Journal, 19:6401–6407.

    Article  PubMed  CAS  Google Scholar 

  • Guthrie, P.B., Segal, M., Kater, S.B., 1991, Independent regulation of calcium revealed by imaging dendritic spines. Nature 354:76–80.

    Article  PubMed  CAS  Google Scholar 

  • Hartzell, H.C., Fischmeister, R., 1992, Direct regulation of cardiac Ca2+ channels by G proteins: neither proven nor necessary? Trends in Pharmacological Sciences, 13:380–385.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Cruz, A., Escobar, A.L., Jimenez, N., 1997, Ca(2+)-induced Ca2+ release phenomena in mammalian sympathetic neurons are critically dependent on the rate of rise of trigger Ca2+. J.Gen.Physiol, 109:147–167.

    Article  PubMed  CAS  Google Scholar 

  • Hollmann, M., Heinemann, S., 1994, Cloned glutamate receptors. Annual Review of Neuroscience, 17:31–108. 118

    Article  PubMed  CAS  Google Scholar 

  • Hua, S.Y., Tokimasa, T., Takasawa, S., Furuya, Y., Nohmi, M., Okamoto, H., Kuba, K., 1994, Cyclic ADP-ribose modulates Ca2+ release channels for activation by physiological Ca2+ entry in bullfrog sympathetic neurons. Neuron, 12:1073–1079.

    Article  PubMed  CAS  Google Scholar 

  • Irving, A.J., Collingridge, G.L., Schofield, J.G., 1992. L-glutamate and acetylcholine mobilise Ca2+ from the same intracellular pool in cerebellar granule cells using transduction mechanisms with different Ca2+ sensitivities. Cell Calcium, 13:293–301.

    Article  PubMed  CAS  Google Scholar 

  • Kerschbaum, H.H., Cahalan, M.D., 1998, Monovalent permeability, rectification, and ionic block of store-operated calcium channels in Jurkat T lymphocytes. J.Gen.Physiol, 111:521–537.

    Article  PubMed  CAS  Google Scholar 

  • Kirischuk, S., Verkhratsky, A., 1996, [Ca2+]i recordings from neural cells in acutely isolated cerebellar slices employing differential loading of the membrane-permeant form of the calcium indicator fura-2. Pflugers Archiv. European Journal of Physiology, 431:977–983.

    PubMed  CAS  Google Scholar 

  • Kobrinsky, E.M., Pearson, H.A., Dolphin, A.C., 1994, Low- and high-voltage-activated calcium channel currents and their modulation in the dorsal root ganglion cell line ND7–23. Neuroscience, 58:539–552.

    Article  PubMed  CAS  Google Scholar 

  • Kostyuk, E., Pronchuk, N., Shmigol, A., 1995, Calcium signal prolongation in sensory neurones of mice with experimental diabetes. Neuroreport, 6:1010–1012.

    Article  PubMed  CAS  Google Scholar 

  • Kostyuk, E., Voitenko, N., Kruglikov, I., Shmigol, A., Shishkin, V., Efimov, A., Kostyuk, P., 2001, Diabetes-induced changes in calcium homeostasis and the effects of calcium channel blockers in rat and mice nociceptive neurons. Diabetologia, 44:1302–1309.

    Article  PubMed  CAS  Google Scholar 

  • Kostyuk, P., 1998, Plasticity in nerve cell function, Clarendon Press, Oxford, p. 144.

    Google Scholar 

  • Kostyuk, P., Pronchuk, N., Savchenko, A., Verkhratsky, A., 1993, Calcium currents in aged rat dorsal root ganglion neurones. J.Physiol, 461:467–483.

    PubMed  CAS  Google Scholar 

  • Kostyuk, P.G., Doroshenko, P.A., 1990, Modulation of calcium channel function in nerve cell membrane. General Physiology and Biophysics, 9:433–443.

    PubMed  CAS  Google Scholar 

  • Kostyuk, P.G., Krishtal, O.A., 1977, Effects of calcium and calcium-chelating agents on the inward and outward current in the membrane of mollusc neurons. Journal of Physiology, London 270: 569–580.

    CAS  Google Scholar 

  • Kostyuk, P.G., Krishtal, O.A., Pidoplichko. V.I., 1975, Effect of internal fluoride and phosphate on membrane currents during intracellular dialysis of nerve cells. Nature, 257: 691–693.

    Article  PubMed  CAS  Google Scholar 

  • Kostyuk, P.G., Lukyanetz, E.A., 1993, Mechanisms of antagonistic action of internal Ca2+ on serotonin-induced potentiation of Ca2+ currents in Helix neurones. Pflugers Archiv. European Journal of Physiology, 424: 73–83.

    PubMed  CAS  Google Scholar 

  • Kostyuk, P.G., Lukyanetz, E.A., Doroshenko, P.A., 1992a, Effects of serotonin and cAMP on calcium currents in different neurones of Helix pomatia. Pflugers Archiv. European Journal of Physiology, 420: 9–15.

    CAS  Google Scholar 

  • Kostyuk, P.G., Lukyanetz, E.A., Ter-Markosyan, A.S., 1992b, Parathyroid hormone enhances calcium current in snail neurones—simulation of the effect by phorbol esters. Pflugers Archiv. European Journal of Physiology, 420: 146–152.

    CAS  Google Scholar 

  • Kostyuk, P.G., Stanika, R.I., Koval, L.M., Lukyanetz, E.A., 2003, Intracellular calcium homeostasis in sensory neurons during hypoxia. Fiziologicheskii Zhurnal, 49: 3–10.

    CAS  Google Scholar 

  • Krishtal, O.A., Marchenko, S.M., Pidoplichko, V.I., 1983, Receptor for ATP in the membrane of mammalian sensory neurones. Neurosci.Lett, 35: 41–45.

    Article  PubMed  CAS  Google Scholar 

  • Kruglikov, I., Gryshchenko, O., Shutov, L., Kostyuk, E., Kostyuk, P., Voitenko, N., 2004, Diabetes-induced abnormalities in ER calcium mobilization in primary and secondary nociceptive neurons. Pflugers Archiv.European Journal of Physiology, 448: 395–401.

    PubMed  CAS  Google Scholar 

  • Lambert, N.A., Borroni, A.M., Grover, L.M., Teyler, T.J., 1991, Hyperpolarizing and depolarizing GABAA receptor-mediated dendritic inhibition in area CA1 of the rat hippocampus. Journal of Neurophysiology, 66: 1538–1548. 119

    PubMed  CAS  Google Scholar 

  • Llano, I., DiPolo, R., Marty, A., 1994, Calcium-induced calcium release in cerebellar Purkinje cells. Neuron, 12: 663–673.

    Article  PubMed  CAS  Google Scholar 

  • Llinas, R., Sugimori, M., Silver, R.B., 1992, Microdomains of high calcium concentration in a presynaptic terminal. Science, 256: 677–679.

    PubMed  CAS  Google Scholar 

  • Lukyanetz, E.A., Stanika, R.I., Koval, L.M., Kostyuk, P.G., 2003, Intracellular mechanisms of hypoxia-induced calcium increase in rat sensory neurons. Archives of Biochemistry and Biophysics, 410: 212–221.

    Article  PubMed  CAS  Google Scholar 

  • Lustig, K.D., Shiau, A.K., Brake, A.J., Julius, D., 1993, Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc.Natl.Acad.Sci.U.S.A, 90: 5113–5117.

    PubMed  CAS  Google Scholar 

  • Marrion, N.V., Adams, P.R., 1992, Release of intracellular calcium and modulation of membrane currents by caffeine in bull-frog sympathetic neurones. J.Physiol, 445: 515–535.

    PubMed  CAS  Google Scholar 

  • Mayer, M.L., Westbrook, G.L., 1987, The physiology of excitatory amino acids in the vertebrate central nervous system. Progress in Neurobiology, 28: 197–276.

    Article  PubMed  CAS  Google Scholar 

  • Mironov, S.L., 1994, Metabotropic ATP receptor in hippocampal and thalamic neurones: pharmacology and modulation of Ca2+ mobilizing mechanisms. Neuropharmacology, 33: 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Mironov, S.L., Hermann, A., 1994, Spatial and dye correlation analysis of intracellular Ca2+ distribution. J.Biolumin.Chemilumin, 9: 233–241.

    Article  PubMed  CAS  Google Scholar 

  • Mironov, S.L., Usachev, Y., Lux, H.D., 1993, Spatial and temporal control of intracellular free Ca2+ in chick sensory neurons. Pflugers Archiv.European Journal of Physiology, 424: 183–191.

    PubMed  CAS  Google Scholar 

  • Nakanishi, S., 1992, Molecular diversity of glutamate receptors and implications for brain function. Science, 258: 597–603.

    PubMed  CAS  Google Scholar 

  • Neher, E., Augustine, G.J., 1992, Calcium gradients and buffers in bovine chromaffin cells. Journal of Physiology, London, 450: 273–301.

    CAS  Google Scholar 

  • Nohmi M, Hua SY, Kuba K, 1992. Intracellular calcium dynamics in response to action potentials in bullfrog sympathetic ganglion cells. J.Physiol 458: 171–190

    PubMed  CAS  Google Scholar 

  • Nowycky MC, Fox AP, Tsien RW, 1985. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316: 440–443

    Article  PubMed  CAS  Google Scholar 

  • O'Malley, D.M,, 1994, Calcium permeability of the neuronal nuclear envelope: evaluation using confocal volumes and intracellular perfusion. Journal of Neuroscience, 14: 5741–5758.

    PubMed  Google Scholar 

  • O'Neill, S.C., Donoso, P., Eisner, D.A., 1990, The role of [Ca2+]i and [Ca2+] sensitization in the caffeine contracture of rat myocytes: measurement of [Ca2+]i and [caffeine]i. J.Physiol, 425: 55–70.

    PubMed  Google Scholar 

  • Pang, P.K., Wang, R., Shan, J., Karpinski, E., Benishin, C.G., 1990, Specific inhibition of longlasting, L-type calcium channels by synthetic parathyroid hormone. Proc .Natl. Acad. Sci. U.S.A. 87: 623–627.

    PubMed  CAS  Google Scholar 

  • Parekh, A.B., Fleig, A., Penner, R., 1997, The store-operated calcium current I(CRAC):nonlinear activation by InsP3 and dissociation from calcium release. Cell, 89: 973–980.

    Article  PubMed  CAS  Google Scholar 

  • Pozzan, T., Rizzuto, R., Volpe, P., Meldolesi, J., 1994, Molecular and cellular physiology of intracellular calcium stores. Physiol Rev., 74: 595–636.

    PubMed  CAS  Google Scholar 

  • Putney, J.W., Jr., 1999, TRP, inositol 1,4,5-trisphosphate receptors, and capacitative calcium entry. Proc.Natl.Acad.Sci.U.S.A, 96: 14669–14671.

    Article  PubMed  CAS  Google Scholar 

  • Putney, J.W., Jr., 2003, Capacitative calcium entry in the nervous system. Cell Calcium, 34: 339–344.

    Article  PubMed  CAS  Google Scholar 

  • Reichling, D.B., Kyrozis, A., Wang, J., MacDermott, A.B., 1994, Mechanisms of GABA and glycine depolarization-induced calcium transients in rat dorsal horn neurons. J.Physiol, 476: 411–421. 120

    PubMed  CAS  Google Scholar 

  • Reuter, H., 1974, Localization of beta adrenergic receptors, and effects of noradrenaline and cyclic nucleotides on action potentials, ionic currents and tension in mammalian cardiac muscle. J.Physiol, 242: 429–451.

    PubMed  CAS  Google Scholar 

  • Rizzuto, R., Brini, M., Murgia, M., Pozzan, T., 1993, Microdomains with high Ca2+ close to IP3- sensitive channels that are sensed by neighboring mitochondria. Science, 262: 744–747.

    PubMed  CAS  Google Scholar 

  • Schettini, G., Meucci, O., Grimaldi, M., Florio, T., Landolfi, E., Scorziello, A., Ventra, C., 1991, Dihydropyridine modulation of voltage-activated calcium channels in PC12 cells: effect of pertussis toxin pretreatment. Journal of Neurochemistry, 56: 805–811.

    PubMed  CAS  Google Scholar 

  • Scott, R.H., Dolphin, A.C., 1987, Activation of a G protein promotes agonist responses to calcium channel ligands. Nature, 330: 760–762.

    Article  PubMed  CAS  Google Scholar 

  • Segal, M., 1993, GABA induces a unique rise of [Ca]i in cultured rat hippocampal neurons. Hippocampus, 3: 229–238.

    Article  PubMed  CAS  Google Scholar 

  • Sencer, S., Papineni, R.V., Halling, D.B., Pate, P., Krol, J., Zhang, J.Z., Hamilton, S.L., 2001, Coupling of RYR1 and L-type calcium channels via calmodulin binding domains. J. of Biological Chemistry, 276: 38237–38241.

    CAS  Google Scholar 

  • Shmigol, A., Kirischuk, S., Kostyuk, P., Verkhratsky, A., 1994, Different properties of caffeinesensitive Ca2+ stores in peripheral and central mammalian neurones. Pflugers Archiv.European Journal of Physiology, 426: 174–176.

    PubMed  CAS  Google Scholar 

  • Shmigol, A., Kostyuk, P., Verkhratsky, A., 1995, Dual action of thapsigargin on calcium mobilization in sensory neurons: inhibition of Ca2+ uptake by caffeine-sensitive pools and blockade of plasmalemmal Ca2+ channels. Neuroscience, 65: 1109–1118.

    Article  PubMed  CAS  Google Scholar 

  • Shuba, Y.M., Hesslinger, B., Trautwein, W., McDonald, T.F., Pelzer, D., 1990, Whole-cell calcium current in guinea-pig ventricular myocytes dialysed with guanine nucleotides. J.Physiol, 424: 205–228.

    PubMed  CAS  Google Scholar 

  • Shuba, Y.M., McDonald, T.F., Trautwein, W., Pelzer, S., Pelzer, D., 1991, Direct up-regulating effect of Gs on the whole-cell L-type Ca current in cardiac cells. Gen.Physiol Biophys, 10: 105–110.

    PubMed  CAS  Google Scholar 

  • Sitsapesan, R., McGarry, S.J., Williams, A.J., 1994, Cyclic ADP-ribose competes with ATP for the adenine nucleotide binding site on the cardiac ryanodine receptor Ca(2+)-release channel. Circulation Research, 75: 596–600.

    PubMed  CAS  Google Scholar 

  • Svichar, N., Shishkin, V., Kostyuk, E., Voitenko, N., 1998, Changes in mitochondrial Ca2+ homeostasis in primary sensory neurons of diabetic mice. Neuroreport. 9: 1121–1125.

    PubMed  CAS  Google Scholar 

  • Tanabe, Y., Nomura, A., Masu, M., Shigemoto, R., Mizuno, N., Nakanishi, S., 1993, Signal transduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. J. of Neuroscience, 13: 1372–1378.

    CAS  Google Scholar 

  • Tang, Y., Zucker, R.S., 1997, Mitochondrial involvement in post-tetanic potentiation of synaptic transmission. Neuron, 18: 483–491.

    Article  PubMed  CAS  Google Scholar 

  • Tepikin, A.V., Kostyuk, P.G., Snitsarev, V.A., Belan, P.V., 1991, Extrusion of calcium from a single isolated neuron of the snail Helix pomatia. J of Membrane Biology, 123: 43–47.

    CAS  Google Scholar 

  • Tepikin, A.V., Llopis, J., Snitsarev, V.A., Gallacher, D.V., Petersen, O.H., 1994, The droplet technique: measurement of calcium extrusion from single isolated mammalian cells. Pflugers Archiv.European Journal of Physiology, 428: 664–670.

    PubMed  CAS  Google Scholar 

  • Thayer, S.A., Hirning, L.D., Miller, R.J., 1987, Distribution of multiple types of Ca2+ channels in rat sympathetic neurons in vitro. Molecular Pharmacology, 32: 579–586.

    PubMed  CAS  Google Scholar 

  • Thayer, S.A., Hirning, L.D., Miller, R.J., 1988, The role of caffeine-sensitive calcium stores in the regulation of the intracellular free calcium concentration in rat sympathetic neurons in vitro. Molecular Pharmacology, 34: 664–673.

    PubMed  CAS  Google Scholar 

  • Thayer, S.A., Miller, R.J., 1990, Regulation of the intracellular free calcium concentration in single rat dorsal root ganglion neurones in vitro. J.,Physiol, 425: 85–115.

    CAS  Google Scholar 

  • Ueno, S., Harata, N., Inoue, K., Akaike, N., 1992, ATP-gated current in dissociated rat nucleus solitarii neurons. J. of Neurophysiology, 68: 778–785.

    CAS  Google Scholar 

  • Usachev, Y., Shmigol, A., Pronchuk, N., Kostyuk, P., Verkhratsky, A., 1993, Caffeine-induced calcium release from internal stores in cultured rat sensory neurons. Neuroscience, 57: 845–859.

    Article  PubMed  CAS  Google Scholar 

  • Usachev, Y., Verkhratsky, A., 1995, IBMX induces calcium release from intracellular stores in rat sensory neurones. Cell Calcium, 17: 197–206.

    Article  PubMed  CAS  Google Scholar 

  • Utzschneider, D.A., Rand, M.N., Waxman, S.G., Kocsis, J.D., 1994, Nuclear and cytoplasmic Ca2+ signals in developing rat dorsal root ganglion neurons studied in excised tissue. Brain Research, 635: 231–237.

    Article  PubMed  CAS  Google Scholar 

  • Verkhratsky, A., Shmigol, A., Kirischuk, S., Pronchuk, N., Kostyuk, P., 1994, Age-dependent changes in calcium currents and calcium homeostasis in mammalian neurons. Annals of the New York Academy of Sciences, 747: 365–381.

    PubMed  CAS  Google Scholar 

  • Vernino, S., Rogers, M., Radcliffe, K.A., Dani, J.A., 1994, Quantitative measurement of calcium flux through muscle and neuronal nicotinic acetylcholine receptors. J.Neurosci, 14: 5514–5524.

    PubMed  CAS  Google Scholar 

  • Veselovskii, N.S., Fedulova, S.A., 1983. Two types of calcium channels in somatic membrane of neurons from rat dorsal ganglia. Dokl.Akad.Nauk USSR. 268: 747–750.

    CAS  Google Scholar 

  • Voets, T., Prenen, J., Fleig, A., Vennekens, R., Watanabe, H., Hoenderop, J.G., Bindels, R.J., Droogmans, G., Penner, R., Nilius, B., 2001, CaT1 and the calcium release-activated calcium channel manifest distinct pore properties. J. of Biological Chemistry, 276: 47767–47770.

    CAS  Google Scholar 

  • Walker, K., Reeve, A., Bowes, M., Winter, J., Wotherspoon, G., Davis, A., Schmid, P., Gasparini, F., Kuhn, R., Urban, L., 2001, mGlu5 receptors and nociceptive function II. mGlu5 receptors functionally expressed on peripheral sensory neurones mediate inflammatory hyperalgesia. Neuropharmacologym 40: 10–19.

    CAS  Google Scholar 

  • Webb, T.E., Simon, J., Krishek, B.J., Bateson, A.N., Smart, T.G., King, B.F., Burnstock, G., Barnard, E.A., 1993, Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS Lett, 324: 219–225.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Z., Neher, E., 1993, Mobile and immobile calcium buffers in bovine adrenal chromaffin cells. J. of Physiology, London, 469: 245–273.

    CAS  Google Scholar 

  • Zong, X., Lux, H.D., 1994, Augmentation of calcium channel currents in response to G protein activation by GTP gamma S in chick sensory neurons. J. of Neuroscience, 14: 4847–4853.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

KOSTYUK, P.G., LUKYANETZ, E.A. (2006). INTRACELLULAR CALCIUM SIGNALING – BASIC MECHANISMS AND POSSIBLE ALTERATIONS. In: Ayrapetyan, S.N., Markov, M.S. (eds) BIOELECTROMAGNETICS Current Concepts. NATO Security Through Science Series, vol 5. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4278-7_05

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4278-7_05

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4276-8

  • Online ISBN: 978-1-4020-4278-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics