Skip to main content

LECTURES ON FLOER THEORY AND SPECTRAL INVARIANTS OF HAMILTONIAN FLOWS

  • Conference paper
Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 217))

Abstract

The main purpose of this lecture is to provide a coherent explanation of the chain level Floer theory and its applications to the study of geometry of the Hamiltonian diffeomorphism group of closed symplectic manifolds. In particular, we explain the author's recent construction of spectral invariants of Hamiltonian paths and an invariant norm of the Hamiltonian di.eomorphism group on nonexact symplectic manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banyaga, A. (1978) Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique, Comment. Math. Helv. 53, 174–227.

    MATH  MathSciNet  Google Scholar 

  • Benci, V. and Rabinowitz, P. H. (1979) Critical point theorems for indefinite functionals, Invent. Math. 52, 241–273.

    Article  MathSciNet  MATH  Google Scholar 

  • Bialy, M. and Polterovich, L. (1994) Geodesics of Hofer’s metric on the group of Hamiltonian diffeomorphisms, Duke Math. J. 76, 273–227.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, K. T. (1973) Iterated integrals of differential forms and loop space homology, Ann. of Math. (2) 97, 217–246.

    MATH  MathSciNet  Google Scholar 

  • Conley, C. C. and Zehnder, E. (1984) Morse-type index theory for flows and periodic solutions of Hamiltonian equations, Comm. Pure Appl. Math. 37, 207–253.

    MathSciNet  MATH  Google Scholar 

  • Entov, M. (2000) K-area, Hofer metric and geometry of conjugacy classes in Lie groups, Invent. Math. 146, 93–141.

    MathSciNet  Google Scholar 

  • Entov, M. (2004) Commutator length of symplectomorphisms, Comment. Math. Helv. 79, 58–104.

    Article  MATH  MathSciNet  Google Scholar 

  • Entov, M. and Polterovich, L. (2003) Calabi quasimorphism and quantum homology, Int. Math. Res. Not. 30, 1635–1676.

    MathSciNet  Google Scholar 

  • Floer, A. (1988) The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math. 41, 775–813.

    MATH  MathSciNet  Google Scholar 

  • Floer, A. (1989) Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120, 575–611.

    Article  MATH  MathSciNet  Google Scholar 

  • Floer, A. and Hofer, H. (1993) Coherent orientations for periodic orbit problems in symplectic geometry, Math. Z. 212, 13–38.

    MathSciNet  MATH  Google Scholar 

  • Floer, A., Hofer, H., and Salamon, D. (1995) Transversality in elliptic Morse theory for the symplectic action, Duke Math. J. 80, 251–292.

    Article  MathSciNet  MATH  Google Scholar 

  • Fukaya, K. and Oh, Y.-G. (1997) Zero-loop open strings in the cotangent bundle and Morse homotopy, Asian J. Math. 1, 96–180.

    MathSciNet  MATH  Google Scholar 

  • Fukaya, K. and Ono, K. (1999) Arnold conjecture and Gromov–Witten invariants, Topology 38, 933–1048.

    Article  MathSciNet  MATH  Google Scholar 

  • Getzler, E., Jones, J. D. S., and Petrack, S. (1991) Differential forms on loop spaces and the cyclic bar complex, Topology 30, 339–371.

    Article  MathSciNet  MATH  Google Scholar 

  • Gromov, M. (1985) Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82, 307–347.

    Article  MATH  MathSciNet  Google Scholar 

  • Guillemin, V. and Lerman, E. and Sternberg, S. (1996) Symplectic Fibrations and Multiplicity Diagrams, Cambridge, Cambridge Univ. Press.

    MATH  Google Scholar 

  • Hofer, H. (1990) On the topological properties of symplectic maps, Proc. Roy. Soc. Edinburgh Sect. A 115, 25–38.

    MATH  MathSciNet  Google Scholar 

  • Hofer, H. (1993) Estimates for the energy of a symplectic map, Comment. Math. Helv. 68, 48–72.

    MATH  MathSciNet  Google Scholar 

  • Hofer, H. and Salamon, D. (1995) Floer homology and Novikov rings, In H. Hofer, C. H. Tauber, A. Weinstein, and E. Zehnder (eds.), The Floer Memorial Volume, Vol. 133 of Progr. Math, pp. 483–524, Boston, MA, Birkhäuser.

    Google Scholar 

  • Kerman, E. and Lalonde, F. (2003) Length minimizing Hamiltonian paths for symplectically aspherical manifolds, Ann. Inst. Fourier (Grenoble) 53, 1503–1526.

    MathSciNet  MATH  Google Scholar 

  • Lalonde, F. and McDuff, D. (1995)a The geometry of symplectic energy, Ann. of Math. (2) 141, 349–371.

    MathSciNet  MATH  Google Scholar 

  • Lalonde, F. and McDuff, D. (1995)b Hofer’s L∞ -geometry: energy and stability of Hamiltonian flows. I, Invent. Math. 122, 1–33; II, 35–69.

    Google Scholar 

  • Liu, G. and Tian, G. (1998) Floer homology and Arnold conjecture, J. Differential Geom. 49, 1–74.

    MathSciNet  MATH  Google Scholar 

  • Liu, G. and Tian, G. (1999) On the equivalence of multiplicative structures in Floer homology and quantum homology, Acta Math. Sinica (Engl. Ser.) 15, 53–80.

    MathSciNet  MATH  Google Scholar 

  • McDuff, D. and Salamon, D. (2004) J-Holomorphic Curves and Symplectic Topology, Vol. 6 of Univ. Lecture Ser., Providence, RI, Amer. Math. Soc.

    Google Scholar 

  • McDuff, D. and Slimowitz, J. (2001) Hofer–Zehnder capacity and length minimizing Hamiltonian paths, Geom. Topol. 5, 799–830.

    Article  MathSciNet  MATH  Google Scholar 

  • Milnor, J. W. and Stasheff, J. D. (1974) Characteristic Classes, Vol. 76 of Ann. of Math. Stud., Princeton, NJ, Princeton Univ. Press.

    Google Scholar 

  • Novikov, S. P. (1981) Multivalued functions and functionals. An analogue of the Morse theory, Dokl. Akad. Nauk SSSR 260, 31–35, Russian.

    Google Scholar 

  • Novikov, S. P. (1982) The Hamiltonian formalism and a multivalued analogue of Morse theory, Uspekhi Mat. Nauk 37, 3–49, Russian.

    Google Scholar 

  • Oh, Y.-G. (1992) Removal of boundary singularities of pseudo-holomorphic curves with Lagrangian boundary conditions, Comm. Pure Appl. Math. 45, 121–139.

    MATH  MathSciNet  Google Scholar 

  • Oh, Y.-G. (1997) Symplectic topology as the geometry of action functional. I, J. Differential Geom. 46, 499–577.

    MATH  MathSciNet  Google Scholar 

  • Oh, Y.-G. (1999) Symplectic topology as the geometry of action functional. II, Comm. Anal. Geom. 7, 1–55.

    MATH  MathSciNet  Google Scholar 

  • Oh, Y.-G. (2002) Chain level Floer theory and Hofer’s geometry of the Hamiltonian diffeomorphism group, Asian J. Math. 6, 579–624; Erratum, 7, 447–448.

    Google Scholar 

  • Oh, Y.-G. (2004)a Floer mini-max theory, the Cerf diagram, and the spectral invariants, arXiv: math. SG/0406449.

    Google Scholar 

  • Oh, Y.-G. (2004)b The group of Hamiltonian homeomorphisms and C 0 -symplectic topology, arXiv: math. SG/0402210.

    Google Scholar 

  • Oh, Y.-G. (2005)a Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds, In The Breadth of Symplectic and Poisson Geometry, Vol. 232 of Progr. Math, pp. 525–570, Boston, MA, Birkhäuser.

    Google Scholar 

  • Oh, Y.-G. (2005)b Normalization of the Hamiltonian and the action spectrum, J. Korean Math. Soc. 42, 65–83.

    MATH  Google Scholar 

  • Oh, Y.-G. (2005)c Spectral invariants, analysis of the Floer moduli space and geometry of Hamiltonian diffeomorphisms, Duke Math. J., to appear; arXiv:math. SG/0403083.

    Google Scholar 

  • Oh, Y.-G. (2005)d Spectral invariants and length minimizing property of Hamiltonian paths, Asian J. Math. 9, 1–18.

    MATH  Google Scholar 

  • Ostrover, Y. (2003) A comparison of Hofer’s metrics on Hamiltonian diffeomorphisms and Lagrangian submanifolds, Commun. Contemp. Math. 5, 803–812.

    MATH  MathSciNet  Google Scholar 

  • Piunikhin, S., Salamon, D., and Schwarz, M. (1996) Symplectic Floer–Donaldson theory and quantum cohomology, In C. B. Thomas (ed.), Contact and Symplectic Geometry, Vol. 8 of Publ. Newton Inst., Cambridge, 1994, pp. 171–200, Cambridge, Cambridge Univ. Press.

    Google Scholar 

  • Polterovich, L. (1993) Symplectic displacement energy for Lagrangian submanifolds, Ergodic Theory Dynam. Systems 13, 357–367.

    Article  MATH  MathSciNet  Google Scholar 

  • Polterovich, L. (1998) Geometry on the group of Hamiltonian diffeomorphisms, Doc. Math. 1998 Extra Vol. II, 401–410.

    Google Scholar 

  • Polterovich, L. (2001) The Geometry of the Group of Symplectic Diffeomorphisms, Lectures Math. ETH Zurich, Basel, Birkhäuser.

    Google Scholar 

  • Polterovich, L. (2005) Floer homology, dynamics and groups, in this volume.

    Google Scholar 

  • Rabinowitz P. H. (1978) Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31, 157–184

    MathSciNet  Google Scholar 

  • Sacks, J. and Uhlenbeck, K. (1981) The existence of minimal immersions of 2-spheres, Ann. of Math. (2) 113, 1–24.

    MathSciNet  Google Scholar 

  • Salamon, D. and Zehnder, E. (1992) Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math. 45, 1303–1360.

    MathSciNet  MATH  Google Scholar 

  • Schwarz, M. (2000) On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math. 193, 419–461.

    Article  MATH  MathSciNet  Google Scholar 

  • Seidel, P. (1997) Í  1 of symplectic diffeomorphism groups and invertibles in quantum homology rings, Geom. Funct. Anal. 7, 1046–1095.

    Article  MATH  MathSciNet  Google Scholar 

  • Ustilovsky, I. (1996) Conjugate points on geodesics of Hofer’s metric, Differential Geom. Appl. 6, 327–342.

    Article  MATH  MathSciNet  Google Scholar 

  • Viterbo, C. (1992) Symplectic topology as the geometry of generating functions, Math. Ann. 292, 685–710.

    Article  MATH  MathSciNet  Google Scholar 

  • Weinstein, A. (1978) Bifurcations and Hamilton’s principle, Math. Z. 159, 235–248.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

OH, YG. (2006). LECTURES ON FLOER THEORY AND SPECTRAL INVARIANTS OF HAMILTONIAN FLOWS. In: Biran, P., Cornea, O., Lalonde, F. (eds) Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology. NATO Science Series II: Mathematics, Physics and Chemistry, vol 217. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4266-3_08

Download citation

Publish with us

Policies and ethics