Skip to main content

HYDROCLIMATOLOGY OF WIND EROSION IN ARID AND SEMIARID ENVIRMONMENTS

  • Chapter
Dryland Ecohydrology

Abstract

The wind has been active as an erosive agent throughout geological times in many parts of the world. It takes up soil from one place and deposits it in another. Outstanding examples are the extensive loess deposits along the Huanghe River (Yellow River) in China, and along the Missouri and Mississippi rivers in the USA. However, in recent years, wind erosion has become more active and more destructive on a global scale, due to the action of man, which is associated with a drastic growth of the world's population over the past century. This accelerated erosion has been caused by inadequate land management including, clearance of the natural vegetation, overgrazing and non-adapted agricultural practices leading to land degradation. In the 1930, a decreased precipitation coupled with intensive agricultural activities caused a dramatic increase in wind erosion in the Great Plains of the United States, resulting in the so-called Dust Bowl. Another example is the Mu Us region in North China with an annual precipitation of 400 mm, which was once grassland partially covered with forest, while now is one of the major sources of dust in the world as a result of overgrazing and agricultural practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agnew, C.T. and A. Warren (1990). Sand trap: agriculture not desert is the greatest threat to arid land. The Sciences, March/April, 14–19.

    Google Scholar 

  • Armbrust, D.V. (1984). Wind and sandblast injury to field crops: effect of plant age. Agron. J., 76, 991–993.

    Article  Google Scholar 

  • Armbrust, D.V., W.S. Chepil, and F.H. Siddoway (1964). Effects of ridges on erosion of soil by wind. Proc. Soil Sci. Soc. Am., 28, 557–560.

    Google Scholar 

  • Arya, S.PS.S. (1975). A drag partitioning theory for determining the large-scale roughness parameter and wind stress on Artic pack ice. J. Geophys. Res., 80, 3447–3454.

    Article  Google Scholar 

  • Azizov, A. (1977). Influence of soil moisture in the resistance of soil to wind erosion. Soviet Soil Sci., 1, 105–108.

    Google Scholar 

  • Bagnold, R.A. (1941). The physics of blown sand and desert dunes. Chapman & Hall, London.

    Google Scholar 

  • Banzhaf, J., D.E. Leihner, A. Buerkert, and P.G. Serafini (1992). Soil tillage and wind break effects on millet and cowpea: I. Wind speed, evaporation, and wind erosion. Agron. J., 84, 1056–1060.

    Article  Google Scholar 

  • Belly, P.Y. (1964). Sand movement by wind. Tech. Memo. 1. U.S. Army Corps of Engineers, Coastal Engineering Research Center, Washington D.C.

    Google Scholar 

  • Bisal, F., and J. Hsieh (1966). Influence of moisture on erodibility of soil by wind. Soil Sci., 102, 143–146.

    Google Scholar 

  • Bradley, N.W., J.M. Gregory and G.R. Wilson (1992). Wet-bonding chemical effects on threshold friction velocity. Pap. ASAE, 922515, St. Joseph MI.

    Google Scholar 

  • Brooks, R.H., and A.T. Corey (1964). Hydraulic properties of porous media. Hydrology Paper 3, Colorado State Univ., Fort Collins, CO. Campbell, G.S. (1974). A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci., 117, 311–314.

    Google Scholar 

  • Campbell, G.S., and S. Schiozawa (1992). Prediction of hydraulic properties of soils using particle size distribution and bulk density data. In: International workshop on indirect methods for estimating the hydraulic properties of unsatured soils. Univ. Calif. Press, Berkeley.

    Google Scholar 

  • Chepil, W.S. (1956). Influence of moisture on erodibility of soil by wind. Soil Sci. Soc. Am. Proc., 20, 288–292.

    Article  Google Scholar 

  • Chepil, W.S. (1957). Sedimentary characteristics of dust storms: sorting of wind eroded soil material. Am. J. Sci., 255, 12–22.

    Google Scholar 

  • Chepil, W.S. (1958a). Soil conditions that influence wind erosion. Tech. Bull. No. 1185.

    Google Scholar 

  • Chepil, W.S., N.P. Woodruff, and F.H. Siddoway (1961). How to Control Soil Blowing. USDA Farmers Bull. No. 2169.

    Google Scholar 

  • Chepil, W.S. (1962). Mechanics of wind erosion and significance as a sediment source. Presented at ARS-SCS Sedimentation Workshop, Panguitch, UT.

    Google Scholar 

  • Chepil, W.S., and N.P. Woodruff (1963). The physics of wind erosion and its control. Adv. Agron., 15, 211–302.

    Google Scholar 

  • Chen, W., Z. Dong, Z. Li and Z. Yang (1996). Wind tunnel test of the influence of moisture on the erodibility of loessial sandy loam soils by wind. J. Arid Environ., 34, 391–402.

    Article  Google Scholar 

  • Claflin, L.E., D.L. Stuteville, and D.V. Armbrust (1973). Windblown soil in the epidemiology of bacterial leaf spot of alfalfa and common blight of beans. Phytopathology, 63, 1417–1419.

    Article  Google Scholar 

  • Cooke, R., A. Warren, and A. Goudie (1993). Desert geomorphology. UCL Press, St. Ives.

    Google Scholar 

  • Cornelis, W.M. and D. Gabriels (2003). The effect of surface moisture on the entrainment of dune sand by wind: an evaluation of selected models. Sedimentology. 50, 771–790.

    Article  Google Scholar 

  • Cornelis, W.M., D. Gabriels and R. Hartmann (2004a). A conceptual model to predict the deflation threshold shear velocity as affected by near-surface water content: 1. Theory. Soil Sci. Soc. Am. J. 68, 1154–1161.

    CAS  Google Scholar 

  • Cornelis, W.M., D. Gabriels and R. Hartmann (2004b). A conceptual model to predict the deflation threshold shear velocity as affected by near-surface water content: 2. Calibration and Verification. Soil Sci. Soc. Am. J. 68, 1162–1168.

    CAS  Google Scholar 

  • Cornelis, W.M., D. Gabriels and R. Hartmann (2004c). A parameterisation for the threshold shear velocity to initiate deflation of dry and wet sediment. Geomorphology. 59, 43–51.

    Article  Google Scholar 

  • Cornelis, W.M., G. Oltenfreiter, D. Gabriels and R. Hartmann (2004d). Splash-Saltation of Sand due to Wind-Driven Rain: Vertical Deposition Flux and Sediment Transport Rate. Soil Sci. Soc. Am. J. 68: 32–40.

    CAS  Google Scholar 

  • Cornelis, W.M., G. Oltenfreiter, D. Gabriels and R. Hartmann (2004e). Splash-Saltation of Sand due to Wind-Driven Rain: Horizontal Flux and Sediment Transport Rate. Soil Sci. Soc. Am. J. 68: 41–46.

    CAS  Google Scholar 

  • Cornelis, W.M. and D. Gabriels (2004). A simple model for the prediction of the deflation threshold shear velocity of loose particles. Sedimentology, 51: 1–13.

    Article  Google Scholar 

  • Crawley, D.M. and W.G. Nickling (2003). Drag partition for regularly arrayed rough surfaces, Boundary Layer Meteorology,107: 445–468.

    Article  Google Scholar 

  • Deardorff, J.W. (1977). Parameterization of ground-surface moisture-content for use in atmospheric prediction models. J. Applied Meteorology, 16, 1182–1185.

    Article  Google Scholar 

  • de Vos, J.A. (1996). Testing compost as an anti wind erosion agent in a wind tunnel. Soil Tech., 9, 209–221.

    Google Scholar 

  • Duncan, E.R., and W.C. Moldenhauer (1968). Controlling Wind Erosion in Iowa. Iowa State Univ. Sci. Techn., Cooperative Extension Service. Pm-432.

    Google Scholar 

  • FAO (1960). Soil erosion by wind and measures for its control. FAO Agricultural Development Paper 71, Rome.

    Google Scholar 

  • Fécan, F., B. Marticorena, and G. Bergametti (1999). Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. Ann. Geophysicae, 17, 149–157.

    Google Scholar 

  • Fisher, R.A. (1926). On the capillary forces in an ideal soil: correction of the formulae given by W.B. Haines. J. Agric. Sci., 16, 492–503.

    CAS  Google Scholar 

  • Fryrear, D.W. (1969). Reducing wind erosion in the southern great plains. Texas Agricultural Experiment Station, MP-929.

    Google Scholar 

  • Fryrear, D.W. (1984). Soil Ridges-Clods and Wind Erosion. Trans. Am. Soc. Agr. Eng., 27, 445–448.

    Google Scholar 

  • Fryrear, D.W., and J.D. Downes (1975). Consider the Plant in Planning Wind Erosion Control Systems. Trans. ASAE, 18, 1070–1072.

    Google Scholar 

  • Fryrear, D.W., J.E. Stout, L.J. Hagen and E.D. Vories (1991). Wind erosion - field measurement and analysis. Trans. ASAE., 34 , 155–160.

    Google Scholar 

  • Fryrear, D.W., A. Saleh, J.D. Bilbro, H.M. Schomberg, J.E. Stout, and T.M. Zobeck (1998). Revised Wind Erosion Equation. Tech. Bull. No. 1. USDA-ARS, Big Spring, TX.

    Google Scholar 

  • Gilette, D.A., J. Adams, A. Endo and D. Smith (1980). Threshold velocities for the input of soil particles into the air by desert soils. J. Geophys. Res., 85, 5621–5630.

    Google Scholar 

  • Gilette, D.A., J. Adams, D. Muhs and R. Kihl (1982). Threshold friction velocities and rupture moduli for crusted desert soils for the input of soil particles in the air. J. Geophys. Res., 87, 9003–9015.

    Google Scholar 

  • Gillette, D.A., G. Herbert, P.H. Stockton .and P.R. Owen (1996). Causes of the fetch effect in wind erosion. Earth Surf. Proc. Landf., 21, 641–659.

    Google Scholar 

  • Glaser, A.H. (1955). The temperature above an airport runway on a hot day: Moist climate, Texas A&M Res. Foundation Contract AF (19(604)-977, Sci. Rep. 5.

    Google Scholar 

  • Gomes L, J.L. Arrue, M.V. Lopez, G. Sterk, D. Richard, R. Gracia, M. Sabre, A. Gaudichet and J.P. Frangi (2003). Wind erosion in a semiarid agricultural area of Spain: the WELSONS project, Catena, 52, 235–256.

    Google Scholar 

  • Goudie, A.S. (1983). Dust storms in space and time. Progress in Physical Geography, 7, 502–529.

    Google Scholar 

  • Gregory, J.M., and M.M. Darwish (1990). Threshold friction velocity prediction considering water content. Pap. ASAE, 902562, St. Joseph MI.

    Google Scholar 

  • Groß, J. and L. Bärring (2003). Wind erosion in Europe: where and when. In: A. Warren (Ed.). Wind erosion on agricultural land in Europe. European Commission, Brussels.

    Google Scholar 

  • Hagen, L.J. (1991a). Wind erosion mechanics - abrasion of aggregated soil. Trans. ASAE, 34, 831–837.

    Google Scholar 

  • Hagen, L.J. (1991b). Wind erosion: emission rates and transport capapcities on rough surface. Pap. ASAE, 912082, St. Joseph MI.

    Google Scholar 

  • Hagen, L.J. (1991c). A wind erosion prediction system to meet user needs. J. Soil Water Cons., 46, 106–111.

    Google Scholar 

  • Hagen, L.J. (1996). Crop residue effects on aerodynamic processes and wind erosion. Theor. Applied Climatology, 54, 39–46.

    Google Scholar 

  • Hagen, L.J. and D.V. Armbrust (1992). Aerodynamic roughness and saltation trapping efficiency of tillage ridges. Trans. ASAE, 35, 1179–1184.

    Google Scholar 

  • Hagen L.J., E.L. Skidmore and A. Saleh (1992). Wind erosion - prediction of aggregate abrasion coefficients. Trans. ASAE, 35, 1847–1850.

    Google Scholar 

  • Haines, W.B. (1925). Studies of the physical properties of soils. II. A note on the cohesion developed by capillary forces in an ideal soil. J. Agric. Sci., 15, 529–535.

    CAS  Google Scholar 

  • Harnby, N. (1992). The mixing of cohesive powders. In: N. Harnby et al. (Eds.) Mixing in the process industries, 2nd Ed. Nienow, Butterworth-Heinemann Ltd, Oxford. pp. 79–98.

    Google Scholar 

  • Hayes, B.A. (1965). Wind Erosion Equation Useful in Designing Northeastern Crop Protection. J. Soil Water Cons., 20, 153–155.

    Google Scholar 

  • Horikawa, K., S. Hotta, and S. Kubota (1982). Experimental study of blown sand on a wetted sand surface. Coastal Eng. Japan, 25, 177–195.

    Google Scholar 

  • Hotta, S., S. Kubota, S. Katori, and K. Horikawa (1984). Sand transport by wind on a wet sand surface. Proceedings of the 19th Coastal Engineering Conference, ASCE, New York, pp. 1263–1281.

    Google Scholar 

  • Iversen, J.D., and B.R. White (1982). Saltation treshold on Earth, Mars and Venus. Sedimentology, 29, 111–119.

    Google Scholar 

  • Kaufman, Y.J., D. Tanre’ and O. Boucher (2002). A satellite view of aerosols in the climate system, Nature, 419, 215–223.

    Article  CAS  PubMed  Google Scholar 

  • Kawata, Y., and Y. Tsuchiya (1976). Influence of water content on the threshold of sand movement and the rate of sand transport in blown sand. Proc. of JSCE, 249, 195–100.

    Google Scholar 

  • Knottnerus, D.J.C. (1985). Verstuiven van grond. Inst. Bodemvruchtbaarheid, Haren. Nota 144.

    Google Scholar 

  • Kosugi, K. (1994). Three-parameter lognormal distribution model for soil water retention. Water Resour. Res., 32, 891901.

    Google Scholar 

  • Kosugi, K. (1997). A new model to analyze water retention characteristics of forest soils based on soil pore-radius distribution. J. For. Res., 2, 1–8.

    Google Scholar 

  • Li, X., H. Maring, D. Savoie, K. Voss and J.M. Prospero (1996). Dominance of mineral dust in aerosol light scattering in the North-Atlantic trade winds, Nature, 380, 416–419.

    Article  CAS  Google Scholar 

  • Logie, M. (1982). Influence of roughness elements and soil moisture on the resistance of sand to wind erosion. Catena, Suppl., 1, 161–174.

    Google Scholar 

  • Lyles, L. (1975). Possible Effects of Wind Erosion on Soil Productivity. J. Soil Water Cons., 30, 279–283.

    Google Scholar 

  • Malcolm, L.P., and M.R. Raupach (1991). Measurements in an air settling tube of the terminal velocity distribution of soil material. J. Geophys. Res., 96, 15275–15286.

    Google Scholar 

  • Marticorena, B., and Bergametti, G. (1995). Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res., 100, 16,415–16.,430.

    Article  Google Scholar 

  • Marticorena, B., G. Bergametti, D. Gillette and J. Belnap (1997a). Factors controlling threshold friction velocity in semiarid and arid areas of the United States. J. Geophys. Res., 102, 23277–23287.

    Google Scholar 

  • Marticorena, B., G. Bergametti, B. Aumont, Y. Callot, C. N’Doumé, and M. Legrand (1997b). Modeling the atmospheric dust cycle: 2. Simulation of Saharan dust sources. J. Geophys. Res., 102, 4387–4404.

    Google Scholar 

  • McKenna-Neuman, C., and W.G. Nickling (1989). A theoretical and wind tunnel investigation of the effect of capillary water on the entrainment of sediment by wind. Can. J. Soil Sci., 69, 79–96.

    Article  Google Scholar 

  • McKenna-Neuman, C.M. (2003). Effects of temperature and humidity upon the entrainment of sedimentary particles by wind. Boundary-Layer Meteorology, 108, 61–89.

    Google Scholar 

  • McKie, R. (2001). Deadly dust ‘brought foot and mouth here’. Guardian Unlimited Archive. 9 Sept. http://www.guardian.co.uk/archive/article/ 0,4273,4253037,00.html

  • Middleton, N.J., A.S. Goudie and G.L. Wells (1986). The frequency and source areas of dust storms. In: W.G. Nickling (Ed.). Aeolian geomorphology. 237–259. Allen & Unwin, London.

    Google Scholar 

  • Monteith, J.L. (1981). Evaporation and surface temperature. Quarterly J. Royal Soc., 107, 1–27.

    Google Scholar 

  • Namikas, S.L., and D.J. Sherman (1995). A review of the effects of surface moisture content on aeolian sand transport. In: Desert Aeolian Processes. Ed. V.P. Tchakerian. Chapman & Hall, London. pp. 269–293.

    Google Scholar 

  • Nanney, R.D., D.W. Fryrear, and T.M. Zobeck (1993). Wind Erosion Prediction and Control. Water Sci. Techn., 28, 3–5.

    Google Scholar 

  • Nickling, W.G. (1978). Eolian sediment transport during dust storms: Slims River Valley, Yukon Territory. Can. J. Soil Sci., 15, 1069–1084.

    Google Scholar 

  • Nickling, W.G. (1984). The stabilizing role of bonding agents on the entrainment of sediment by wind. Sedimentology, 31, 111–117.

    CAS  Google Scholar 

  • Nickling, W.G., and M. Ecclestone (1981). The effects of soluble salts on the threshold shear velocity of fine sand. Sedimentology, 28, 505–510.

    CAS  Google Scholar 

  • Nickling, W.G., and J.A. Gillies (1989). Emission of fine-grained particles from desert spoils. In: M. Leinen and M. Sarnthein (Eds.). Paleoclimatology and paleometeorology: modern and past patterns of global atmospheric transport. Kluwer, Amsterdam. 133–165.

    Google Scholar 

  • Nicks, A.D., J.R. Williams, C.W. Richardson and L.J. Lane (1987). Generating climatic data for a water erosion prediction model. Pap. ASAE, 87–2541.,. Joseph MI.

    Google Scholar 

  • Nordstrom, K. and S. Hotta (2004). Wind erosion from cropland in the USA: a review of problems, solutions and prospects. Geoderma, 121, 157–167.

    Article  Google Scholar 

  • Owen, P.R. (1964). Saltation of uniform grains in air. J. Fluid Mech., 20, 225–242.

    Google Scholar 

  • Peerlkamp, P.K. (1970). Grondverstuivingen en hun bestrijding. Jaarverslag 1970. Inst. Bodemvruchtbaarheid, Haren. pp. 74–86.

    Google Scholar 

  • Prandtl, H. (1935). The mechanics of viscous fluids: aerodynamic theory. Julius Springer, Berlin.

    Google Scholar 

  • Pye, K. (1980). Beach salcrete and eolian sand transport: evidence from North Queensland. J. Sediment. Petrology, 50, 257–261.

    CAS  Google Scholar 

  • Pye, K. (1987). Aeolian dust and dust deposits. Academic Press, London.

    Google Scholar 

  • Rajot, J.L., S.C. Alfaro, L. Gomes, A. Gaudichet (2003). Soil crusting on sandy soils and its influence on wind erosion. Catena, 53, 1–16.

    Article  Google Scholar 

  • Ramanathan, V., P.J. Crutzen, J.T. Kiehl, and D. Rosenfeld (2001). Aerosols, Climate, and the Hydrological Cycle, Science, 294, 2119–2124.

    Article  CAS  PubMed  Google Scholar 

  • Raupach M.R., D.A. Gillette, J.F. Leys (1993). The effect of roughness elements on wind erosion threshold, J. Geophys Res., 98(D2), 3023–3029.

    Google Scholar 

  • Rice, M.A., B.B. Willetts and I.K. McEwan (1996). Wind erosion of crusted soil sediments. Earth Surf. Proc. Landf., 21, 279–293.

    CAS  Google Scholar 

  • Rice, M.A., C.E. Mullins and I.K. McEwan (1997). An analysis of soil crust strength in relation to potential abrasion by saltating particles. Earth Surf. Proc. Landf., 22, 869–883.

    Google Scholar 

  • Rosenfeld, D., Y. Rudich, and R. Lahav (2001). Desert dust suppressing precipitation: A possible desertification feedback loop, Proc.Natl. Acad. Sci. U.S.A.,98(11), 5975–5979.

    Article  CAS  PubMed  Google Scholar 

  • Ross, P.J., J. Williams, and K.L. Bristow (1991). Equation for extending water-retention curves to dryness. Soil Sci. Soc. Am. J., 55, 923–927.

    Google Scholar 

  • Rossi, C., and J.R. Nimmo (1994). Modeling of soil water retention from saturation to oven dryness. Water Resour. Res., 30, 701–708.

    Article  Google Scholar 

  • Saleh, A., and D.W. Fryrear (1995). Threshold wind velocities of wet soils as affected by wind blown sand. Soil Sci., 160, 304–309.

    Google Scholar 

  • Schmidt, B.L., and G.B. Triplett (1967). Controlling Wind Erosion. Ohio Report, May-June. pp. 35–38.

    Google Scholar 

  • Schofield, R.K. (1935). The pF of the water in soil. Trans. Int. Congr. Soil Sci. 3rd, II. pp. 38–48.

    Google Scholar 

  • Schwab, G.O., D.D. Fangmeier, W.J. Elliot, and R.K. Frevert (1993). Wind Erosion and Control Practices. In: Soil and Water Conservation Engineering, John Wiley & Sons, Inc., New York. 114–133.

    Google Scholar 

  • Shao, Y. (2000). Physics and modelling of wind erosion. Atmospheric and oceanographic sciences library, 23, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Shao, Y., and H. Lu (2000). A simple expression for wind erosion threshold friction velocity. J. Geophys. Res., 105, 22,437–22.,443.

    Article  Google Scholar 

  • Shao, Y., M.R., Raupach, and J.F. Leys (1996). A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region. Aust. J. Soil Res., 34, 309–342.

    Article  Google Scholar 

  • Singh, U.B., Gregory, J.M. and Wilson, G.R. (1999). Texas Erosion Analysis Model: Theory and validation. In: Proceedings of Wind Erosion: An International Symposium/Workshop, Manhattan, KS. Manuscript on CD-Rom. 23 pp.

    Google Scholar 

  • Skidmore, E.L. (1986). Wind erosion control. Clim. Change, 9, 209–218.

    Google Scholar 

  • Skidmore, E.L. (1989). Wind erosion in stressed environments. USDA-ARS, Kansas Agric. Exp. Sta., 89–542.-A.

    Google Scholar 

  • Skidmore, E.L. and J. Tatarko (1990). Stochastic wind simulution for erosion modeling. Trans. ASAE, 33, 1893–1899.

    Google Scholar 

  • Skidmore, E.L., P.S. Fisher, and N.P. Woodruff (1970). Wind Erosion Equation: Computer Solution and Application. Soil Sci. Soc. Am. Proc., 34, 931–935.

    Article  Google Scholar 

  • Spaan, W.P., and G.D. van den Abeele (1991). Wind borne particle measurements with acoustic sensors, Soil Technology, 4, 51–63.

    Article  Google Scholar 

  • Stallings, J.H. (1957). Soil Conservation. Prentice-Hall, Inc., Englewood Cliffs, New York.

    Google Scholar 

  • Sterk, G., M.V. Lopez and J.L. Arrue (1999). Saltation transport on a silt loam soil in Northeast Spain. Land Degr. Developm., 10, 545–554.

    Google Scholar 

  • Stout, J.E. (1990). Wind erosion within a simple field. Trans. ASAE, 33, 1597–1600.

    Google Scholar 

  • Stroosnijder, L. (2003). Measurement of erosion: is it possible? In: D. Gabriels and W.M. Cornelis (Ed.). 25 years of assessment of erosion. Ghent University, Ghent.

    Google Scholar 

  • Swap R., Garstang, Greco, S. (1992). Saharan dust in the Amazon Basin, Tellus, 44B, 133–149.

    CAS  Google Scholar 

  • Toy, T.J., G.R. Foster and K.G. Renard (2002). Soil Erosion, Wiley.

    Google Scholar 

  • UNEP (1997). World atlas of desertification. Arnold, London.

    Google Scholar 

  • van Dijk, P.M., L. Stroosnijder, and J.L.M.P. de Lima (1996). The influence of rainfall on transport of beach sand by wind. Earth Surf. Proc. Landf., 21, 341–352.

    Google Scholar 

  • van Genuchten, M. Th. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892–898.

    Google Scholar 

  • Williams, J.R. (1994). The EPIC model. USDA-ARS, Temple, TX.

    Google Scholar 

  • Wilson, S.J., and R.U. Cooke (1980). Wind erosion. In: M.J. Kirkby, and R.P.C. Morgan. Soil Erosion. John Wiley & Sons, Chichester. pp. 217–251.

    Google Scholar 

  • Woodruff, N.P., and F.H. Siddoway (1965). A Wind Erosion Equation. Soil Sci. Soc. Am. Proc., 29, 602–608.

    Google Scholar 

  • Zobeck T.M. (1991a). Abrasion of crusted soils -influence of abrader flux and soil properties. Soil Sci. Soc. Am. J., 55, 1091–1097.

    Article  Google Scholar 

  • Zobeck T.M. (1991b). Soil properties affecting wind erosion. J. Soil Water Cons., 46, 112–118.

    Google Scholar 

  • Zobeck, T.M. and T.W. Popham (1992). Influence of microrelief, aggregate size, and precipitation on soil crust properties. Trans. ASAE, 35, 487–492.

    Google Scholar 

  • Zobeck, T.M., G. Sterk, R. Funk, J.L. Rajot, J.E. Stout, R.S. Van Pelt (2003). Measurement and data analysis methods for field-scale wind erosion studies and model validation. Earth Surf. Proc. Landf., 28, 1163–1188.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

CORNELIS, W.M. (2006). HYDROCLIMATOLOGY OF WIND EROSION IN ARID AND SEMIARID ENVIRMONMENTS. In: D'Odorico, P., Porporato, A. (eds) Dryland Ecohydrology. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4260-4_9

Download citation

Publish with us

Policies and ethics