Skip to main content

SOIL MOISTURE CONTROLS ON WATER VAPOR AND CARBON FLUXES IN SEMI-ARID REGIONS

  • Chapter
Dryland Ecohydrology

Abstract

In this chapter we focus on savannas as a representative semi-arid, or dry-land, cover type. Savannas cover some 20% of the global land mass, including 40% of Africa (Scholes and Walker 1993). The term “Savanna” is defined by a co-existence of herbaceous and woody vegetation (often referred to as grass and trees, for simplicity) that is largely due to the limited nature of water availability (but also reflecting the imprints of fire and herbivory). In fact, as a type, the savanna is largely unique in the strength of contrast in the important characteristics between its two dominant vegetation types (Scholes and Walker, 1993). Savannas have a significant role in global net primary productivity, second only to tropical forests (Atjay et al. 1987). In contrast to tropical forests, however, these water limited systems exhibit dramatic changes in their structure (e.g. grass and tree densities) and function (e.g. water and carbon fluxes) in response to typical seasonal, inter-annual, ENSO, and decadal precipitation variability (Scanlon and Albertson 2003a). As for the southern African savannas, as an example, the anticipated decreases in regional rainfall (10-20%) and continued increases in population put the global and regional services of these savannas in jeopardy (IPCC 1992; Moleele and Mainah, 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albertson, J. D., and G. Kiely. 2001. On the structure of soil moisture time series in the context of land surface models. Journal of Hydrology 243:101–119.

    Article  Google Scholar 

  • Anderies, J. M., M. A. Janssen, and B. H. Walker. 2002. Grazing management, resilience, and the dynamics of a firedriven rangeland system. Ecosystems 5:23–44.

    Article  Google Scholar 

  • Atjay, G. L., P. Ketner, and P. Duvigneaud. 1987. Terrestrial primary production and phytomass. Pages 129-181 in B. B. et. al., editor. The Global Carbon Cycle. SCOPE 13, John Wiley, New York.

    Google Scholar 

  • Avissar, R., and R. A. Pielke. 1991. The impact of plant stomatal control on mesoscale atmospheric circulations. Agricultural and Forest Meteorology 54:353–372.

    Article  Google Scholar 

  • Bonan, G. 1998. The Land Surface Climatology of the NCAR Land Surface Model Coupled to the NCAR Community Climate Model. Journal of Climate, 11, 1307–1326.

    Article  Google Scholar 

  • Bounoua, L., R. DeFries, G. J. Collatz, P. Sellers, H. Khan, 2002. Effects of Land Cover Conversion on Surface Climate, Climatic Change, 52(1-2), 29 -64.

    Google Scholar 

  • Brutsaert, W., 1982, Evaporation into the atmosphere, Kluwer Academic Publ., Dordrecht, Holland, p. 299.

    Google Scholar 

  • Calvet J.C., Noilhan J., Roujean J.L., Bessemoulin P., Cabelguenne M., Olioso A., and J.P. Wigneron, 1998, An interactive vegetation SVAT model tested against data from six contrasting sites, Agr. Forest Meteorol., 92 (2), 73-95

    Article  Google Scholar 

  • Campbell, G. S., and J. M. Norman. 1998. An Introduction to Environmental Biophysics, 2nd edition. Springer, New York.

    Google Scholar 

  • Carpenter, S., B. Walker, J. M. Anderies, and N. Abel. 2001. From metaphor to measurement: Resilience of what to what? Ecosystems 4:765–781.

    Google Scholar 

  • Cayrol P., Chehbouni A., Kergoat L., Dedieu G., Mordelet P., Nouvellon Y., 2000a, Grassland modeling and monitoring with SPOT-4 VEGETATION instrument during the 1997-1999 SALSA experiment, Agric. For. Meteorol., 105, 91–115.

    Article  Google Scholar 

  • Cayrol P, Kergoat L, Moulin S, Dedieu G, Chehbouni A., 2000b, Calibrating a coupled SVAT-vegetation growth model with remotely sensed reflectance and surface temperature -A case study for the HAPEX-Sahel grassland sites, J. Appl. Meteorol., 39 (12), 2452–2472.

    Article  Google Scholar 

  • Chen, J.L., and J.F.Reynolds, 1997, GePSi: A generic plant simulator based on object-oriented principles, Ecol. Model., 94 (1), 53–66.

    Article  CAS  Google Scholar 

  • Clapp, R. B., and G. M. Hornberger, 1978, Empirical Equations for Some Soil Hydraulic-Properties, Water Resour. Res., 14, 601-604

    Google Scholar 

  • Eagleson, P. S., 2002, Ecohydrology: Darwinian Expression of Vegetation Form and Function, Cambridge University Press, New York.

    Google Scholar 

  • Farquar, G. D., von Caemmere, S., Berry, J. A., 1980, A biochemical model of phosynthesis CO2 assimilation in leaves of C3 species, Planta, 149, 78–90.

    Google Scholar 

  • Huntley, B. J., and B. H. Walker. 1982. Characteristic Features of Tropical Savannas -Conclusion. Ecological Studies 42:657–660.

    Google Scholar 

  • IGBP. 1997. IGBP Report 42: The Kalahari Transect: Research on Global Change and Sustainable

    Google Scholar 

  • IPCC. 1992. IPCC First Assessment Overview and Policymaker Summaries and 1992 IPCC Supplement. IPCC, Geneva, Switzerland.

    Google Scholar 

  • Jacquemin, B., and J. Noilhan. 1990. Sensitivity study and validation of a land surface parameterization using the HAPEX-MOBILHY data set. Boundary Layer Meteorology 52:93–134.

    Article  Google Scholar 

  • Larcher, W., 1995, Physiological Plant Ecology, Springer, 506 pp.

    Google Scholar 

  • Lecain, D.R., J.A. Morgan, A.R. Mosier, and J.A. Nelson, 2003, Soil and plant water relations determine photosynthetic responses of C-3 and C-4 grasses in a semi-arid ecosystem under elevated CO2, Annals of Botany 92 (1): 41–52.

    Article  CAS  PubMed  Google Scholar 

  • Lombardini, L., This volume, Responses of plants growing in dry environments.

    Google Scholar 

  • LoSeen, D., A. Chehbouni, E. Njoku, S. Saatchi, E. Mougin, and G. Monteny, 1997, An approach to couple vegetation functioning and soil-vegetation-atmosphere-transfer models for semiarid grasslands during the HAPEX-Sahel experiment, Agric. For. Meteorol., 83 (1-2), 49–74.

    Article  Google Scholar 

  • Mahfouf, J. H., C. Ciret, A. Ducharne, P. Irannejad, J. Noilhan, Y. Shao, P. Thornton, L. Xue, and Z.-L. Yang. 1996. Analysis of transpiration results from the RICE and PILPS Workshop. Global and Planetary Change 13:73–88.

    Article  Google Scholar 

  • Moleele, N. M. and J. Mainah, 2003, Resource use conflicts: the future of the Kalahari ecosystem, Journal of Arid Environments, 54: 405–423.

    Article  Google Scholar 

  • Mougin, E., D. Loseen, S. Rambal, A. Gaston, and P. Hiernaux, 1995, A regional sahelian grassland model to be coupled with multispectral satellite data .1. model description and validation, Remote Sens. Environ., 52 (3), 181–193.

    Article  Google Scholar 

  • Nouvellon Y, Rambal S, Lo Seen D, Moran MS, Lhomme JP, Begue A, Chehbouni AG, Kerr Y., 2000, Modelling of daily fluxes of water and carbon from shortgrass steppes, Agr. Forest. Meteorol., 100 (2-3), 137–153.

    Google Scholar 

  • Parlange, M.B., J.D. Albertson, W.E. Eichinger, A.T. Cahill and T.J.Jackson, 1999, Evaporation: Use of fast response turbulence sensors, raman lidar and passive microwave remote sensing, in: Vadose Zone Hydrology: Cutting Across Disciplines, M.B. Parlange and JW Hopmans (eds.), Oxford University Press, 260–278.

    Google Scholar 

  • Priestley, C. H. B., and R. J. Taylor. 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review 100:81–92.

    Google Scholar 

  • Rodriguez-Iturbe, I., P. D'Odorico, A. Porporato, and L. Ridolfi. 1999a. On the spatial and temporal links between vegetation, climate, and soil moisture. Water Resources Research 35:3709–3722.

    Article  Google Scholar 

  • Rodriguez-Iturbe, I., P. D'Odorico, A. Porporato, and L. Ridolfi. 1999b. Tree-grass coexistence in savannas: The role of spatial dynamics and climate fluctuations. Geophysical Research Letters 26:247–250.

    Article  Google Scholar 

  • Rodriguez-Iturbe, I., A. Porporato, L. Ridolfi, V. Isham, and D. R. Cox. 1999c. Probabilistic modelling of water balance at a point: the role of climate, soil and vegetation. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences 455:3789–3805.

    Google Scholar 

  • Rodriguez-Iturbe, I., A. Porporato, F. Laio, and L. Ridolfi. 2001. Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress -I. Scope and general outline. Advances in Water Resources 24:695–705.

    Article  Google Scholar 

  • Scanlon, T. M, K. K. Caylor, S. Manfreda, S. A. Levin, and I. Rodriguez-Iturbe, Dynamic response of grass cover to rainfall variability: Implications for the function and persistence of savanna ecosystems, Advances in Water Resources, 28: 291–302.

    Google Scholar 

  • Scanlon, T. M., and J. D. Albertson. 2004. Canopy scale measurements of CO2 and water vapor exchange along a precipitation gradient in southern Africa. Global Change Biology, 10 (3): 329–341.

    Article  Google Scholar 

  • Scanlon, T. M., and J. D. Albertson, 2003a. Inferred controls on tree/grass composition in a savanna ecosystem: combining 16 year NDVI data with a dynamic soil moisture model. Water Resources Research 39 (8): Art. No. 1224.

    Google Scholar 

  • Scanlon, T. M., and J. D. Albertson, 2003b. Water availability and the spatial complexity of CO2, water, and energy fluxes over a heterogeneous sparse canopy. Journal of Hydrometeorology, 4 (5): 798–809.

    Article  Google Scholar 

  • Scanlon, T. M., J. D. Albertson, K. K. Caylor, and C. A. Williams. 2002. Determining land surface fractional cover from NDVI and rainfall time series for a savanna ecosystem. Remote Sensing of Environment 82:376–388.

    Article  Google Scholar 

  • Scholes, R. J., and S. R. Archer. 1997. Tree-grass interactions in savannas. Annual Review of Ecology and Systematics 28:517–544.

    Article  Google Scholar 

  • Scholes, R. J., and B. H. Walker. 1993. An African savanna: synthesis of the Nylsvley study. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Veenendaal, E.M., O. Kolle, J. Lloyd, 2004, Seasonal variation in energy fluxes and carbon dioxide exchange for a broad-leaved semi-arid savanna (Mopane woodland) in Southern Africa, Global Change Biology, 10 (3): 318–328.

    Article  Google Scholar 

  • Walker, B. H., D. Ludwig, C. S. Holling, and R. M. Peterman. 1981. Stability of semi-arid savanna grazing systems. Journal of Ecology 69:473–498.

    Google Scholar 

  • Walker, B. H. and J. L. Langridge, 1997, Predicting savanna vegetation structure on the basis of plant available moisture (PAM) and plant available nutrients (PAN): a case study from Australia, J. Biogeogr., 24, 813–825.

    Article  Google Scholar 

  • Walker, B., S. Carpenter, J. Anderies, N. Abel, G. Cumming, M. Janssen, L. Lebel, J. Norberg, G. D. Peterson, and R. Pritchard. 2002. Resilience management in social-ecological systems: a working hypothesis for a participatory approach. Conservation Ecology 6:art. no.-14.

    Google Scholar 

  • Walker, B. H., editor. 1987. Determinants of tropical savannas: presentations made by savanna researchers at a workshop in Harare, Zimbabwe, December 1985. ICSU Press for the International Union of Biological Sciences, Oxford.

    Google Scholar 

  • Williams, C.A., and J.D. Albertson, 2004, Soil moisture controls on canopy-scale water and carbon fluxes in an African savanna, Water Resources Research, Vol. 40, W09302, 14pp.

    Google Scholar 

  • Williams, C. A. and J. D. Albertson, 2005, Contrasting short-and long-time scale effects of vegetation dynamics on water and carbon fluxes in water-limited ecosystems, in review, Water Resources Research.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

ALBERTSON, J.D., WILLIAMS, C.A., SCANLON, T.M., MONTALDO, N. (2006). SOIL MOISTURE CONTROLS ON WATER VAPOR AND CARBON FLUXES IN SEMI-ARID REGIONS. In: D'Odorico, P., Porporato, A. (eds) Dryland Ecohydrology. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4260-4_5

Download citation

Publish with us

Policies and ethics