Skip to main content

Primary Electron Transfer

  • Chapter
Book cover Photosystem II

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 22))

Summary

This chapter reviews our current state of knowledge on the primary electron transfer in Photosystem II (PS II). Properties of chlorophyll (Chl) a in solution and the basic features of pigment-pigment and pigment-protein interactions as well as the principles underlying excitation energy transfer and electron transfer are briefly outlined. Using this description as a starting point, and based on recent information available for the spatial arrangement of the cofactors, the general features of light-induced charge separation in PS II are presented. Special attention is given to the unique properties of the photoactive pigment P680, which consists of a special multimeric pigment complex of the form (Chl a)4 (Pheo)x with x = 0, 1 or 2. The possible electronic structures of 1P680*, 3P680 and P680+• as well as the underlying features that establish the extraordinarily high oxidizing power of P680+• are discussed. Evidence is presented that in the first electron transfer event a ‘monomeric’ type Chl a within the multichromophoric P680 transfers an electron from its excited singlet state to an associated pheophytin (Pheo) a molecule which acts as the primary electron acceptor. This event is followed by rapid spin redistribution, leading to predominant localization of the electron hole on a Chl a in P680 designated as PD1, which is part of a ‘dimeric’ structural motif termed PD1PD2 and is in close proximity to the redox-active tyrosine YZ. The process leading to the formation of the radical ion pair P680+• Pheo−• comprises a cascade of radical pair states of decreasing energy through a sequence of relaxation reactions with the protein environment. The role of the protein environment in the primary charge separation process is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agostiano A, Catucci L, Colafemmina G and Scheer H (2002) Role of functional groups and surfactant charge in regulating chlorophyll aggregation in micellar solutions. J Phys Chem 106: 1446–1454

    CAS  Google Scholar 

  • Akiyama M, Miyashita H, Kise H, Watanabe T, Mimuro M, Miyachi S and Kobayashi M (2002) Quest for minor but key chlorophyll molecules in photosynthetic reaction centers—unusual pigment composition in the reaction centers of the chlorophyll d-dominated cyanobacterium Acaryochloris marina. Photosynth Res 74: 97–107

    Article  CAS  PubMed  Google Scholar 

  • Andrizhiyevskaya EG, Frolov D, van Grondelle R and Dekker JP (2004) On the role of the CP47 core antenna in the energy transfer and trapping dynamics of Photosystem II. Phys Chem Chem Phys 6: 4810–4819

    Article  CAS  Google Scholar 

  • Avarmaa RA and Rebane KK (1985) High-resolution optical spectra of chlorophyll molecules. Spectrochim Acta 41A: 1365–1380

    CAS  Google Scholar 

  • Balaban TS, Leitich J, Holzwarth AR and Schaffner K (2000) Autocatalyzed self-aggregation of (31R)-[Et,Et]bacteriochlorophy11 cf molecules in nonpolar solvents. Analysis of the kinetics. J Phys Chem B 104: 1362–1372

    Article  CAS  Google Scholar 

  • Balaban TS, Fromme P, Holzwarth AR, Krauß N and Prokhorenko VI (2002) Relevance of the diastereotopic ligation of magnesium atoms of chlorophylls in Photosystem I. Biochim Biophys Acta 1556: 197–207

    CAS  PubMed  Google Scholar 

  • Barkigia KM and Fajer J (1993) Models of photosynthetic chromophores: Molecular structures of chlorins and bacteriochlorins. In: Deisenhofer J and Norris JR (eds) The Photosynthetic Reaction Center, Vol II, pp 513–539. Academic Press, New York

    Google Scholar 

  • Barter LMC, Durrant JR and Klug DR (2003) A quantitative structure-function relationship for the Photosystem II reaction center: Supermolecular behaviour in natural photosynthesis Proc Natl Acad Sci USA 100: 946–951

    Article  CAS  PubMed  Google Scholar 

  • Baxter RHG, Ponomarenko N, Srajer V, Pahl R, Moffat K and Norris JR (2004) Time-resolved crystallographic studies of light-induced structural changes in the photosynthetic reaction center. Proc Natl Acad Sci USA 101: 5982–5987

    Article  CAS  PubMed  Google Scholar 

  • Bell LN and Gudkov ND (1992) Thermodynamics of light energy conversion. In: Barber J (ed) Topics in Photosynthesis, The Photosystems: Structure, Function and Molecular Biology, pp 17–43. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Bernarding J, Eckert HJ, Eichler HJ, Napiwotzki A and Renger G (1994) Kinetic studies on the stabilisation of the primary radical pair P680+Pheo in different Photosystem II preparations from higher plants. Photochem Photobiol 59: 566–573

    CAS  Google Scholar 

  • Biesiadka J, Loll B, Kern J, Irrgang K-D and Zouni A (2004) Crystal structure of cyanobacterial Photosystem II at 3.2 Å resolution: A closer look at the Mn-cluster. Phys Chem Chem Phys 6: 4733–4736

    Article  CAS  Google Scholar 

  • Booth PJ, Crystall B, Giorgi LB, Barber J, Klug DR and Porter G (1990) Thermodynamic properties of D1/D2/cytochrome b-559 reaction centres investigated by time-resolved fluorescence measurements. Biochim Biophys Acta 1016: 141–152

    CAS  Google Scholar 

  • Bylina EJ, Kirmaier C, McDowell L, Holten D and Youvan DC (1988) Influence of an amino-acid residue on the optical properties and electron transfer dynamics of a photosynthetic reaction centre complex. Nature 336: 182–184

    Article  CAS  Google Scholar 

  • Camara-Artigas A, Brune D and Allen JP (2002) Interactions between lipids and bacterial reaction centers determined by protein crystallography. Proc Natl Acad Sci USA 99: 11055–11060

    Article  CAS  PubMed  Google Scholar 

  • Cherepanov DA, Krishtalik LI and Mulkidjanian AY (2001) Photosynthetic electron transfer controlled by protein relaxation: Analysis by Langevin stochastic approach. Biophys J 80: 1033–1049

    CAS  PubMed  Google Scholar 

  • Christen G, Karge M, Eckert H J and Renger G (1997) The role of protonation steps in electron transfer reactions in Tris-treated PS II membrane fragments. Photosynthetica 33: 529–539

    CAS  Google Scholar 

  • Christen G, Seeliger A and Renger G (1999) P+680 reduction kinetics and redox transition probability of the water oxidising complex as a function of pH and H/D isotope exchange in spinach thylakoids. Biochemistry 38: 6082–6092

    CAS  PubMed  Google Scholar 

  • Christophorov LN, Holzwarth AR, Kharkyanen VN and van Mourik F (2000) Structure-function self-organization in nonequilibrium macromolecular systems. Chem Phys 256: 45–60

    Article  CAS  Google Scholar 

  • Crofts AR and Wraight CA (1983) The electrochemical domain of photosynthesis. Biochim Biophys Acta 726: 149–185

    CAS  Google Scholar 

  • Cuni A, Xiong L, Sayre R, Rappaport F and Lavergne J (2004) Modification of the pheophytin midpoint potential in Photosystem II: Modulation of the quantum yield of charge separation and of charge recombination pathways. Chem Phys Phys Chem 6: 4825–4831

    CAS  Google Scholar 

  • Danielius RV, Satoh K, van Kan PJM, Plijter JJ, Nuijs AM and van Gorkom HJ (1987) The primary reaction of Photosystem II in the D1-D2-cytochrome b-559 complex. FEBS Lett 213: 241–244

    Article  CAS  Google Scholar 

  • Davydov AS (1962) Theory of Molecular Excitons. McGraw-Hill, New York

    Google Scholar 

  • Deisenhofer J and Michel H (1993) Three-dimensional structure of the reaction center of Rhodopseudomonas viridis. In: Deisenhofer J and Norris JR (eds) The Photosynthetic Reaction Center, Vol II, pp 541–558. Academic Press, New York

    Google Scholar 

  • Dexter DI (1953) A theory of sensitised luminescence in solids. J Chem Phys 21: 836–850

    Article  CAS  Google Scholar 

  • Diner BA and Rappaport F (2002) Structure, dynamics, and energetics of the primary photochemistry of Photosystem II of oxygenic photosynthesis. Annu Rev Plant Biol 53: 551–580

    Article  CAS  PubMed  Google Scholar 

  • Diner BA, Schlodder E, Nixon PJ, Coleman WJ, Rappaport F, Lavergne J, Vermaas WFJ and Chisholm DA (2001) Site-directed mutations at D1-His 198 and D2-His197 of Photosystem II in Synechocystis PCC 6803: Sites of primary charge separation and cation triplet stabilization. Biochemistry 40: 9265–9281

    Article  CAS  PubMed  Google Scholar 

  • Diner BA, Bautista JA, Nixon P J, Berthomieu C, Hienerwadel R, Britt RD, Vermaas WFJ and Chisholm DA (2004) Coordination of proton and electron transfer form the redox-active tyrosine, YZ, of Photosystem II and examination of the electrostatic influence of oxidized tyrosine, YD (H+). Phys Chem Chem Phys 6: 4844–4850

    Article  CAS  Google Scholar 

  • Döring G, Renger G, Vater J and Witt HT (1969) Properties of the photoactive chlorophyll all in photosynthesis. Z Naturforsch 24b: 1139–1143

    Google Scholar 

  • Dorlet P, Xiong L, Sayre RT and Un S (2001) High field EPR study of the pheophytin anion radical in wild type and D1-E130 mutants of Photosystem II in Chlamydomonas reinhardtii. J Biol Chem 276: 22313–22316

    Article  CAS  PubMed  Google Scholar 

  • Durrant JR, Hastings G, Joseph DM, Barber J, Porter G and Klug DR (1992) Subpicosecond equilibration of excitation energy in isolated Photosystem II reaction centers. Proc Natl Acad Sci USA 89: 11632–1163

    CAS  PubMed  Google Scholar 

  • Durrant JR, Klug DR, Kwa SLS, van Grondelle RV, Porter G and Dekker JP (1995) A multimer model for P680, the primary electron donor of Photosystem II. Proc Natl Acad Sci USA 92: 4798–4802

    CAS  PubMed  Google Scholar 

  • Duysens LMN and Sweers HE (1963) Mechanism of two photochemical reactions in algae as studied by means of fluorescence. In: Takamiya A and Shibata K (eds) Studies on Microalgae and Photosynthetic Bacteria, pp 353–372. Univ Tokyo Press, Tokyo

    Google Scholar 

  • Eckert HJ, Renger G, Bernarding J, Faust P, Eichler HJ and Salk J (1987) Examination of fluorescence lifetime and radical pair decay in PS II membrane fragments from spinach. Biochim Biophys Acta 893: 208–218

    CAS  Google Scholar 

  • Eckert HJ, Wiese N, Bernarding J, Eichler HJ and Renger G (1988) Analysis of the electron transfer from Pheo to QA in PS II membrane fragments from spinach by time resolved 325 nm absorption changes in the picosecond domain. FEBS Lett 240: 153–158

    Article  CAS  PubMed  Google Scholar 

  • Eijckelhoff C, van Roon H, Groot ML, van Grondelle R and Dekker JP (1996) Purification and spectroscopic characterization of Photosystem II reaction center complexes isolated with or without Triton X-100. Biochemistry 35: 12864–12872

    Article  CAS  PubMed  Google Scholar 

  • Fajer J (2000) Structural effects in chemistry and biology. J Porphyrins Phthalocyanines 4: 382–385

    Article  CAS  Google Scholar 

  • Fajer J (2004) Chlorophyll chemistry before and after crystals of photosynthetic reaction centers. Photosynth Res 80: 165–172

    Article  CAS  PubMed  Google Scholar 

  • Feher G, Isaacson RA, Okamura MY and Lubitz W (1988) ENDOR of exchangeable protons of the reduced intermediate acceptor in reaction centers from Rhodobacter Sphaeroides R-26 In: Breton J and Vermeglio A (eds) The Photosynthetic Bacterial Reaction Center: Structure and Dynamics, pp 229–235. Plenum Press, New York

    Google Scholar 

  • Ferreira K, Iverson TM, Maghlouni K, Barber J and Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303: 1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Fletcher JT and Therien MJ (2002) Extreme electronic modulation of the cofacial porphyrin structural motif. J Am Chem Soc 124: 4298–4311

    CAS  PubMed  Google Scholar 

  • Förster Th (1965) Delocalized excitation and excitation transfer. In: Sinanoglu O (ed) Modern Quantum Chemistry Vol III, pp 93–137. Academic Press, New York

    Google Scholar 

  • Fromme P, Jordan P and Krauß N (2001) Structure of Photosystem I. Biochim Biophys Acta 1507: 5–31

    CAS  PubMed  Google Scholar 

  • Garbers A, Kurreck J, Reifarth F, Renger G and Parak F (1998) Correlation between protein flexibility and electron transfer from Q A to QB in PS II membrane fragments from spinach. Biochemistry 37: 11399–11404

    Article  CAS  PubMed  Google Scholar 

  • Germano M, Gradinaru CC, Shkuropatov AY, van Stokkum IHM, Shuvalov VA, Dekker JP, van Grondelle R and van Gorkom HJ (2004) Energy and electron transfer in Photosystem II reaction centers with modified pheophytin composition. Biophys J 86: 1664–1672

    CAS  PubMed  Google Scholar 

  • Gibasiewicz K, Dobek A, Breton J and Leibl W (2001) Modulation of primary radical pair kinetics and energetics in Photosystem II by the redox state of the quinone electron acceptor QA. Biophys J 80: 1617–1630

    CAS  PubMed  Google Scholar 

  • Giorgi LB, Nixon PJ, Merry SAP, Joseph DM, Durrant JR, De Las Rivas J, Barber J, Porter G and Klug DR (1996) Comparison of primary charge separation in the Photosystem II reaction center complex isolated from wild-type and D1-130 mutants of the cyanobacterium Synechocystis PCC 6803. J Biol Chem 271: 2093–2101

    CAS  PubMed  Google Scholar 

  • Greenfield SR, Seibert M, Govindjee and Wasielewski MRJ (1997) Direct measurement of the effective rate constant for primary charge separation in isolated Photosystem II reaction centers. J Phys Chem B 101: 2251–2255

    Article  CAS  Google Scholar 

  • Groot M-L, van Mourik F, Eijckelhoff C, van Stokkum IHM, Dekker JP and van Grondelle R (1997) Charge separation in the reaction center of Photosystem II studied as a function of temperature. Proc Natl Acad Sci USA 94: 4389–4394

    Article  CAS  PubMed  Google Scholar 

  • Gudowska-Nowak E, Newton MD and Fajer J (1990) Conformational and environmental effects on bacteriochlorophyll optical spectra: Correlations of calculated spectra with structural results. J Phys Chem 94: 5795–5801

    Article  CAS  Google Scholar 

  • Haran G, Wynne K, Moser CC, Dutton PL and Hochstrasser RM (1996) Femtosecond infrared studies of photosynthetic reaction centers: New charge transfer bands and ultrafast energy redistribution. In: Barbara PF, Fujimoto JG, Knox WH and Zinth Z (eds) Ultrafast Phenomena X, pp 326–327. Springer Verlag, Berlin

    Google Scholar 

  • Hasegawa K and Noguchi T (2005) Density functional theory calculations on the dielectric-constant dependence of the oxidation potential of chlorophyll: Implication for the high potential of P680 in Photosystem II. Biochemistry 44: 8865–8872

    Article  CAS  PubMed  Google Scholar 

  • Haveman J and Mathis P (1976) Flash-induced absorption changes of the primary donor of Photosystem II at 820 nm in chloroplasts inhibited by low pH or Tris-treatment. Biochim Biophys Acta 440: 346–355

    PubMed  Google Scholar 

  • He J, Chen F, Li J, Sankey OF, Terazono Y, Herrero Ch, Gust D, Moore TA, Moore AL and Lindsay SM (2004) Electronic decay constant of carotenoid polyenes from single-molecule measurements. J Am Chem Soc 127: 1384–1385

    Google Scholar 

  • Hillmann B, Brettel K, van Mieghem FJE, Kamlowski A, Rutherford AW and Schlodder E (1995) Charge recombination in Photosystem II. 2. Transient absorbance difference spectra and their temperature dependence. Biochemistry 34: 4814–4827

    Article  CAS  PubMed  Google Scholar 

  • Hochstrasser RM and Kasha M (1964) Application of the exciton model to mononuclear lamellar systems. Photochem Photobiol 3: 317–331

    CAS  Google Scholar 

  • Holzwarth AR (1989) Applications of ultrafast laser spectroscopy for the study of biological systems. Quart Rev Biophys 22: 239–326

    CAS  Google Scholar 

  • Holzwarth AR and Müller MG (1996) Energetics and kinetics of radical pairs in reaction centers from Rhodobacter sphaeroides. A femtosecond transient absorption study. Biochemistry 35: 11820–11831

    Article  CAS  PubMed  Google Scholar 

  • Hunter CN, Hughes JM, Reimer JR and Hush NS (1999) Modelling the bacterial photosynthetic reaction center. 2. A combined quantum mechanical/molecular mechanical study of the structure of the cofactors in the reaction centers of purple bacteria. J Phys Chem B 103: 4906–4915

    Google Scholar 

  • Huppman P, Arlt T, Penzkofer H, Schmidt S, Bibikova M, Dohse B, Oesterhelt D, Wachtveitl J and Zinth W (2002) Kinetics, energetics and electronic coupling of the primary electron transfer reactions in mutated reaction centers of Blastochloris viridis. Biophys J 82: 3186–3197

    CAS  PubMed  Google Scholar 

  • Huppman P, Spörlein, S, Bibikova M, Oesterhelt D, Wachtveitl J and Zinth W (2003) Electron transfer in reaction centers of Blastochloris viridis: Photosynthetic reactions approximating the adiabatic regime. J Phys Chem A 107: 8302–8309

    Google Scholar 

  • Ishikita H, Loll B, Biesiadka J, Saenger W, and Knapp E-W (2005) Redox potentials of chlorophylls in the Photosystem II reaction center. Biochemistry 44: 4118–4124

    CAS  PubMed  Google Scholar 

  • Ivancich A, Arltz K, Williams JC, Allen JP, Mattioli TA (1998) Effects of hydrogen bonds on the redox potential and electronic structure of the bacterial primary electron donor. Biochemistry 37: 11812–11820

    Article  CAS  PubMed  Google Scholar 

  • Jankowiak R, Hayes JM and Small GJ (2002) An excitonic pentamer model for the core Qy states of the isolated Photosystem II reaction center. J Phys Chem B 106: 8803–8814

    Article  CAS  Google Scholar 

  • Jankowiak R, Rätsep M, Hayes J, Zazubovich V, Picorel R, Seibert M and Small GJ (2003) Primary charge-separation rate at 5 K in isolated Photosystem II reaction centers containing five and six chlorophyll a molecules. J Phys Chem B 107: 2068–2074

    Article  CAS  Google Scholar 

  • Jeans C, Schilstra MJ, Ray N, Husain S, Minagawa J, Nugent JHA and Klug DR (2002) Replacement of tyrosine D with phenylalanine affects the normal proton transfer pathways for the reduction of P680+ in oxygen-evolving Photosystem II particles from Chlamydomonas. Biochemistry 41: 15754–15761

    CAS  PubMed  Google Scholar 

  • Johnson ET, Nagarajan V, Zazubovich V, Riley K, Small GJ and Parson WW (2003) Effects of ionisable residues on the absorption spectrum and initial electron-transfer kinetics in the photosynthetic reaction center of Rhodobacter sphaeroides. Biochemistry 42: 13673–13683

    CAS  PubMed  Google Scholar 

  • Johnston H, Wang J, Ruffle SV, Sayre RT and Gustafson TL (2000) Fluorescence decay kinetics of wild type D2-H1 17N mutant Photosystem II reaction centers isolated from Chlamydomonas reinhardtii. J Phys Chem B 104: 4777–4781

    CAS  Google Scholar 

  • Jursinic P and Govindjee (1977) Temperature dependence of delayed light emission in the 6-340 microsecond range after a single flash in chloroplasts. Photochem Photobiol 26: 617–628

    CAS  Google Scholar 

  • Kaminskaya O, Renger G and Shuvalov VA (2003) Effect of dehydration on light induced reactions in Photosystem II: Evidence for the presence of two functionally different Cytochromes b559. Biochemistry 42: 8119–8132

    Article  CAS  PubMed  Google Scholar 

  • Kamiya N and Shen J-R (2003) Crystal structure of oxygen-evolving Photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution. Proc Natl Acad Sci USA 100: 98–103

    Article  CAS  PubMed  Google Scholar 

  • Kamlowski A, Frankemöller L, Van der Est A, Stehlik D and Holzwarth AR (1996) Evidence for delocalization of the triplet state 3P680 in the D1/D2/Cyt b559-complex of Photosystem II. Ber Bunsenges Phys Chem 100: 2045–2051

    CAS  Google Scholar 

  • Karplus M and McCammon JM (1983) Dynamics of proteins: Elements and function. Annu Rev Biochem 52: 263–300

    CAS  PubMed  Google Scholar 

  • Katiliene Z, Katilius E and Woodbury NW (2003) Energy trapping and detrapping in reaction center mutants from Rhodobacter sphaeroides. Biophys 84: 3240–3251

    CAS  Google Scholar 

  • Kawatsu T, Kakitani T and Yamato T (2001) Worm model for electron tunneling in proteins: Consolidation of the pathway model and the Dutton plot. J Phys Chem B 105: 4424–4435

    Article  CAS  Google Scholar 

  • Ke B (2001) Photosynthesis: Photobiochemistry and Photobiophysics. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Klimov VV, Klevanik AV, Shuvalov VA and Krasnovsky AA (1977) Reduction of pheophytin in the primary light reaction of Photosystem II. FEBS Lett 82: 183–186

    Article  CAS  PubMed  Google Scholar 

  • Klimov VV, Allakhverdiev SI, Demeter S and Krasnovsky AA (1979) Photoreduction of pheophytin in Photosystem II of chloroplasts as a function of redox potential of the medium. Dokl Akad Nauk SSSR 249: 227–230

    CAS  Google Scholar 

  • Klug DR, Rech T, Josef DM, Barber J, Durrant JR and Porter G (1995) Primary processes in isolated Photosystem II reaction centers probed by magic angle transient absorption spectroscopy. Chem Phys 194: 433–442

    Article  CAS  Google Scholar 

  • Knapp EW, Fischer SF, Zinth W, Sander M, Kaiser W, Deisenhofer J and Michel H (1985) Analysis of optical spectra from single crystals of Rhodopseudomonas viridis reaction centers. Proc Natl Acad Sci USA 82: 8463–8467

    CAS  Google Scholar 

  • Knox RS and van Amerongen H (2002) Refractive index dependence of the Förster resonance excitation transfer rate. J Phys Chem B 106: 5289–5293

    Article  CAS  Google Scholar 

  • Kobayashi M, Maeda H, Watanabe T, Nakane H and Satoh K (1990) Chlorophyll a and β-carotene content in the D1/D2/ cytochrome b559 reaction center complex from spinach. FEBS Lett 260: 138–140

    Article  CAS  Google Scholar 

  • Konermann L and Holzwarth AR (1996) Analysis of the absorption spectrum of Photosystem II reaction centers: Temperature dependence, pigment assignment and inhomogeneous broadening. Biochemistry 35: 829–842

    Article  CAS  PubMed  Google Scholar 

  • Konermann L, Gatzen G and Holzwarth AR (1997) Primary processes and structure of the Photosystem II reaction center. V Modeling of the fluorescence kinetics of the D1-D2-Cyt-b559 complex at 77K. J Phys Chem B 101: 2933–2944

    Article  CAS  Google Scholar 

  • Krieger-Liszkay A and Rutherford AW (1998) Influence of herbicide binding on the redox potential of the quinone acceptor in Photosystem II: Relevance to photodamage and phytotoxicity. Biochemistry: 37: 17339–17344

    Article  CAS  PubMed  Google Scholar 

  • Krieger A, Rutherford AW and Johnson GN (1995) On the determination of the redox midpoint potential of the primary quinone acceptor, QA, in Photosystem II. Biochim Biophys Acta 1229: 193–201

    Google Scholar 

  • Krishtalik LI (1986) Energetics of multielectron reactions. Photosynthetic oxygen evolution. Biochim Biophys Acta 849: 162–171

    CAS  Google Scholar 

  • Kühn O, Renger T, May V, Voigt J, Pullerits T and Sundström V (1997) Exciton-vibrational coupling in photosynthetic antenna complexes: theory meets experiment. Trends Photochem Photobiol 4: 213–256

    Google Scholar 

  • Kühn P, Eckert H-J, Eichler H-J and Renger G (2004) Analysis of the P680+* reduction pattern and its temperature dependence in oxygen evolving PS II core complexes from thermophilic cyanobacteria and higher plants. Phys Chem Chem Phys 6: 4838–4843

    Article  Google Scholar 

  • Kühn P, Pieper J, Kaminskaya O, Eckert H-J, Lechner R, Shuvalov V and Renger G (2005) Reaction pattern of Photosystem II: Oxidative water cleavage and protein flexibility. Photosynth Res 84: 317–323

    PubMed  Google Scholar 

  • Kurreck J, Garbers A, Reifarth F, Andréasson LE, Parak F and Renger G (1996) Isolation and properties of PS II membrane fragments depleted of the non heme iron center. FEBS Lett 381: 53–57

    Article  CAS  PubMed  Google Scholar 

  • Kurreck J, Liu B, Napiwotzki A, Sellin S, Eckert HJ, Eichler HJ and Renger G (1997a) Stoichiometry of pigments and radical pair formation under saturating pulse excitation in D1/D2/Cyt b559 preparations. Biochim Biophys Acta 1318: 307–315

    CAS  Google Scholar 

  • Kurreck J, Garbers A, Parak F and Renger G (1997b) Highly purified D1/D2/Cyt b559 preparations from spinach do not contain the non heme iron center. FEBS Lett 403: 283–286

    Article  CAS  PubMed  Google Scholar 

  • Laible PD, Kirmaier C, Udawatte CSM, Hofman SJ, Holten D and Hanson DK (2003) Quinone reduction via secondary b-branch electron transfer in mutant bacterial reaction centers. Biochemistry 42: 1718–1730

    Article  CAS  PubMed  Google Scholar 

  • Leibl W, Breton J, Deprez J and Trissl HW (1989) Photoelectronic study on the kinetics of trapping and charge stabilization in oriented PS II membranes. Photosynth Res 22: 257–275

    Article  CAS  Google Scholar 

  • Leupold D, Teuchner K, Ehlert J, Irrgang KD, Renger G and Lokstein H (2002) Two-photon excited fluorescence from higher electronic states of chlorophylls in photosynthetic antenna complexes: A new approach to investigate spectral heterogeneity (‘chlorophyll forms’) Biophys J 82: 1580–1585

    CAS  PubMed  Google Scholar 

  • Lince MT and Vermaas W (1998) Association of His 117 in the D2 protein of Photosystem II with a chlorophyll that affects excitation: Energy transfer efficiency to the reaction center. Eur J Biochem 256: 595–602

    Article  CAS  PubMed  Google Scholar 

  • Liu B, van Kan PJM and Hoff AJ (1991) Influence of the H-subunit and Fe2+ on electron transport from I to QA in Fe2+ free and/or H-free reaction centers from Rhodobacter sphaeroides R-26. FEBS Lett 289: 23–28

    Article  CAS  PubMed  Google Scholar 

  • Lubitz W and Lendzian F (1996) ENDOR Spectroscopy In: Amesz J and Hoff AJ (eds) Biophysical Techniques in Photosynthesis, pp 255–275. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Lubitz W, Isaacson RA, Okamura MY, Abresch EC, Plato M and Feher G (1989) ENDOR studies of the intermediate electron acceptor radical anion I* in Photosystem II reaction centers. Biochim Biophys Acta 977: 227–232

    CAS  PubMed  Google Scholar 

  • MacMillan F, Lendzian F, Renger G and Lubitz W (1995) EPR and ENDOR investigation of the primary electron acceptor radical anion Q A in iron-depleted Photosystem II membrane fragments. Biochemistry 34: 8144–8156

    Article  CAS  PubMed  Google Scholar 

  • Mäntele W (1996) Infrared and Fourier-transformed infrared spectroscopy. In: Amesz J and Hoff AJ (eds) Biophysical Techniques in Photosynthesis, pp 137–157. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Marcus RA and Sutin N (1985) Electron transport in chemistry and biology. Biochem Biophys Acta 811: 265–322

    CAS  Google Scholar 

  • Matysik J, Gast AP, van Gorkom HJ and de Groot HJM (2000) Photochemically induced nuclear spin polarization in reaction centers of Photosystem II observed by 13C-solid-state NMR reveals a strongly asymmetric electronic structure of the P +680 * primary donor chlorophyll. Proc Natl Acad Sci USA 97: 9865–9870

    Article  CAS  PubMed  Google Scholar 

  • McMahon BH, Muller JD, Wraight CA and Nienhaus GU (1998) Electron transfer and protein dynamics in the photosynthetic reaction center. Biophys J 74: 2567–2587

    CAS  PubMed  Google Scholar 

  • Merry SAP, Nixon PJ, Barter LMC, Schilstra M, Porter G, Barber J, Durrant JR and Klug DR (1998) Modulation of quantum yield of primary radical pair formation in Photosystem II by site-directed mutagenesis affecting radical cations and anions. Biochemistry 37: 17439–17447

    Article  CAS  PubMed  Google Scholar 

  • Michel H and Deisenhofer J (1988) Relevance of the photosynthetic reaction center from purple bacteria to the structure of Photosystem II. Biochemistry 27: 1–7

    Article  CAS  Google Scholar 

  • Michel-Beyerle ME, Plato M, Deisenhofer J, Michel H, Bixon M and Jortner J (1988) Unidirectionality of charge separation in reaction centers of photosynthetic bacteria. Biochim Biophys Acta 932: 52–70

    CAS  Google Scholar 

  • Mimuro M, Tomo T, Nishimura Y, Yamazaki I and Satoh K (1995) Identification of a photochemically inactive pheophytin molecule in the spinach D1-D2-Cyt b559 complex. Biochim Biophys Acta 1232: 81–88

    Google Scholar 

  • Mimuro M, Akimoto S, Gotoh T, Yokono M, Akiyama M, Tsuchiya T, Miyashita H, Kobayashi M and Yamazaki I (2004) Identification of the primary electron donor in PS II of the Chl d-dominated cyanobacterium Acaryochloris marina. FEBS Lett 556: 95–98

    Article  CAS  PubMed  Google Scholar 

  • Moënne-Loccoz R, Robert B and Lutz M (1989) A resonance Raman characterization of the primary electron acceptor in Photosystem II. Biochemistry 28: 3641–3645

    Google Scholar 

  • Moser CC and Dutton PC (1996) Outline of theory of protein electron transfer. In: Bendall DS (ed) Protein Electron Transfer, pp 1–21. BIOS Scientific Publishers, Oxford

    Google Scholar 

  • Müh F, Rautter J and Lubitz W (1996) Two distinct conformations of the primary electron donor in reaction centers from Rhodohacter sphaeroides revealed by ENDOR/TRIPLE Spectroscopy. Biochemistry 36: 4155–41162

    Google Scholar 

  • Mulkidjanian A (1999) Photosystem II of green plants: On the possible role of retarded protonic relaxation in water oxidation. Biochim Biophys Acta 1410: 1–6

    CAS  PubMed  Google Scholar 

  • Müller MG, Dorra D, Holzwarth AR, Gad’on N and Drews G (1995) Time-dependent radical pair relaxation in chromatophores of an antenna-free mutant from Rhodobacter capsulatus. In: Mathis P (ed) Photosynthesis: From Light to Biosphere. Vol 1, pp 595–598. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Müller MG, Hucke M, Reus M and Holzwarth AR (1996) Primary processes and structure of the Photosystem II reaction center: IV. Low intensity femtosecond transient absorption spectra of D1-D2 reaction centers. J Phys Chem 100: 9527–9536

    Google Scholar 

  • Nabedryk E, Andrianambinintsoa S, Berger G, Leonhard M, Mäntele W and Breton J (1990) Characterization of bonding interactions of the intermediary electron acceptor in the reaction center of Photosystem II by FTIR spectroscopy. Biochim Biophys Acta 1016: 49–54

    CAS  Google Scholar 

  • Nanba O and Satoh K (1987) Isolation of a Photosystem II reaction center consisting of D1 and D2 polypeptides and cytochrome b559. Proc Natl Acad Sci USA 84: 109–112

    CAS  Google Scholar 

  • Nishigaki A, Ohshima S, Nakayama K, Okada M and Nagashima U (2001) Application of molecular orbital calculations to interpret the chlorophyll spectral forms in pea Photosystem II. Photochem Photobiol 73: 245–248

    Article  CAS  PubMed  Google Scholar 

  • Noguchi T, Tomo T and Inoue Y (1998) Fourier transform infrared study of the cation radical of P680 in the Photosystem II reaction center: Evidence for charge delocalization on the chlorophyll dimer. Biochemistry 37: 13614–13625

    Article  CAS  PubMed  Google Scholar 

  • Noguchi T, Kurreck J, Inoue Y and Renger G (1999) Comparative FTIR analysis of the microenvironment of Q A in cyanide and high pH treated and ‘iron depleted’ PS II membrane fragments. Biochemistry 38: 4846–4852

    CAS  PubMed  Google Scholar 

  • Norris JR, Scheer H and Katz JJ (1974) Models of antenna and reaction center chlorophylls. Ann NY Acad Sci 244: 260

    Google Scholar 

  • Nuijs AM, van Gorkom HJ, Plijter JJ and Duysens LNM (1986) Primary-charge separation and excitation of chlorophyll a in Photosystem II particles from spinach as studied by picosecond absorbance-difference spectroscopy. Biochim Biophys Acta 848: 167–175

    CAS  Google Scholar 

  • Oba T and Tamiaki H (2002) Which side of the π-macrocycle plane of (bacterio)chlorophylls is favored for binding the fifth ligand? Photosynth Res 74: 1–10

    Article  CAS  PubMed  Google Scholar 

  • Ogrodnik A, Volk M, Letterer R, Feick R and Michel-Beyerle ME (1988) Determination of free energies in reaction centers of Rb. sphaeroides. Biochim Biophys Acta 936: 361–371

    CAS  Google Scholar 

  • Page CC, Moser CC, Chen X and Dutton PL (1999) Natural engineering principles of electron tunneling in biological oxidation-reduction. Nature 402: 47–52

    CAS  PubMed  Google Scholar 

  • Palazzo G, Mallardi A, Hochkoeppler A, Cordone L and Venturoli G (2002) Electron transfer kinetics in photosynthetic reaction centers embedded in trehalose glasses: Trapping of conformational substates at room temperature. Biophys J 82: 558–568

    CAS  PubMed  Google Scholar 

  • Papageorgiou GC and Govindjee (eds) (2004) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Springer, Berlin

    Google Scholar 

  • Parker CA and Joyce TA (1967) Delayed fluorescence and some properties of the chlorophyll triplets. Photochem Photobiol 6: 395–406

    CAS  Google Scholar 

  • Parson WW (1978) Thermodynamics of the primary reactions of photosynthesis. Photochem Photobiol 28: 389–393

    CAS  Google Scholar 

  • Parson WW and Warshel (2004) A density-matrix model of photosynthetic electron transfer with microscopically estimated vibrational relaxation times. Chem Phys 296: 201–216

    Article  CAS  Google Scholar 

  • Parson WW, Chu ZT and Warshel A (1990) Electrostatic control of charge separation in bacterial photosynthesis. Biochim Biophys Acta 1017: 251–272

    CAS  PubMed  Google Scholar 

  • Paschenko VZ, Gorokhov VV, Knox PP, Krasilnikov PM, Redlin H, Renger G and Rubin AB (2003) Energetics and mechanisms of high efficiency of charge separation and electrons transfer processes in Rhodobacter sphaeroides reaction centers. Bioelectrochemistry 61: 73–84

    Article  CAS  PubMed  Google Scholar 

  • Pearlstein RM (1982) Chlorophyll singlet exciton. In: Govindjee (ed) Photosynthesis 1, Energy Conversion by Plants and Bacteria, pp 293–330. Academic Press, New York

    Google Scholar 

  • Pearlstein RM (1991) Theoretical interpretation of antenna spectra. In: Scheer H (ed) Chlorophylls, pp 1047–1078. CRC Press, New York

    Google Scholar 

  • Peloquin JM, Williams JC, Lin X, Alden RG, Taguchi AKW, Allen JP and Woodbury NW (1994) Time-dependent thermodynamics during early transfer in reaction centers from Rhodobacter sphaeroides. Biochemistry 33: 8089–8100

    Article  CAS  PubMed  Google Scholar 

  • Peterman EJG, Pullerits T, van Grondelle Rand Van Amerongen H (1997) Electron-phonon coupling and vibronic fine structure of light-harvesting complex II of green plants; Temperature dependent absorption and high-resolution fluorescence spectroscopy. J Phys Chem B 101: 4448–4457

    Article  CAS  Google Scholar 

  • Peterson-Arsköld S, Masters VM, Prince BJ, Smith PJ, Pace RJ and Krausz E (2003) Optical Spectra of Synechocystis and Spinach Photosystem II Preparations at 1.7 K: Identification of the D1-Pheophytin Energies and Stark Shifts: J Am Chem Soc 125

    Google Scholar 

  • Petke JD, Maggiora GM, Shipman L and Christoffersen RE (1979) Stereoelectronic properties of photosynthetic and related systems-V. Ab initio configuration interaction calculation on the ground and lower excited singlet and triplet states of ethyl chlorophyllide a and ethyl pheophorbide a. Photochem Photobiol 30: 203–223

    CAS  Google Scholar 

  • Pieper J, Voigt J, Renger G and Small GJ (1999) Analysis of phonon structure in line-narrowed optical spectra. Chem Phys Lett 310: 296–302

    Article  CAS  Google Scholar 

  • Pieper J, Irrgang K-D, Renger G and Lechner RE (2004) Density of vibrational states of solubilized LHC II complexes of green plants studied by inelastic neutron scattering. J Phys Chem B 108: 10556–10565

    Article  CAS  Google Scholar 

  • Prokhorenko VI and Holzwarth AR (2000) Primary processes and structure of the Photosystem II reaction center: A photon echo study. J Phys Chem B 104: 11563–11578

    Article  CAS  Google Scholar 

  • Rappaport F, Guergova-Kuras M, Nixon PJ, Diner BA and Lavergne J (2002) Kinetics and pathways of charge recombination in Photosystem II. Biochemistry 41: 8518–8527

    Article  CAS  PubMed  Google Scholar 

  • Raszewski G, Saenger W and Renger T (2005) Theory of optical spectra of Photosystem II reaction centers: Location of the triplet state and the identity of the primary electron donor. Biophys J 88: 986–998

    CAS  PubMed  Google Scholar 

  • Raymond J and Blankenship RE (2004) The evolutionary development of the protein complement of Photosystem 2. Biochim Biophys Acta 1655: 133–139

    CAS  PubMed  Google Scholar 

  • Reed DW and Clayton RK (1968) Isolation of a reaction center fraction from Rhodopseudomonas sphaeroides. Biochem Biophys Res Commun 30: 471–475

    Article  CAS  PubMed  Google Scholar 

  • Reifarth F and Renger G (1998) Indirect evidence for structural changes coupled with Q B formation in Photosystem II. FEBS Lett 428: 123–126

    Article  CAS  PubMed  Google Scholar 

  • Remy A and Gerwert K (2003) Coupling of light-induced electron transfer to proton uptake in photosynthesis. Nature Struct Biol 10: 637–644

    Article  CAS  PubMed  Google Scholar 

  • Reinman S and Mathis P (1981) Influence of temperature on Photosystem II electron transfer reactions. Biochim Biophys Acta 635: 249–258

    CAS  PubMed  Google Scholar 

  • Renger G (1987) Mechanistic aspects of photosynthetic water cleavage. Photosynthetica 21: 203–224

    CAS  Google Scholar 

  • Renger G (1992) Energy transfer and trapping in Photosystem II. In: Barber J (ed) Topics in Photosynthesis, The Photosystems: Structure, Function and Molecular Biology, pp 45–99. Elsevier, Amsterdam

    Google Scholar 

  • Renger G (1999) Molecular mechanism of water oxidation. In: Singhal GS, Renger G, Govindjee, Irrgang, KD and Sopory SK (eds) Concepts in Photobiology: Photosynthesis and Photomorphogenesis, pp 292–329. Kluwer Academic Publishers, Dordrecht and Narosa Publishing Co., Delhi

    Google Scholar 

  • Renger G (2001) Photosynthetic water oxidation to molecular oxygen: Apparatus and mechanism. Biochim Biophys Acta 1503: 210–228

    CAS  PubMed  Google Scholar 

  • Renger G (2003) Apparatus and mechanism of photosynthetic oxygen evolution: A personal perspective. Photosynth Res 76: 269–288

    Article  CAS  PubMed  Google Scholar 

  • Renger G (2004) Coupling of electron and proton transfer in oxidative water cleavage in photosynthesis. Biochim. Biophys. Acta

    Google Scholar 

  • Renger T and Marcus RA (2002a) On the relation of protein dynamics and exciton relaxation in pigment-protein complexes: An estimation of the spectral density and a theory for the calculation of optical spectra. J Chem Phys 22: 9997–10019

    Google Scholar 

  • Renger T and Marcus RA (2002b) Photophysical properties of PS-2 reaction centers and a discrepancy in exciton relaxation times. J Phys Chem B 106: 1809–1819

    Article  CAS  Google Scholar 

  • Renger T and May V (1997) Multiple exciton effects in molecular aggregates: Application to a photosynthetic antenna complex. Phys Rev Lett 78: 3406–34

    Article  CAS  Google Scholar 

  • Renger G and Wolff Ch (1976) The existence of a high photochemical turnover rate at the reaction centers of system II in Triswashed chloroplasts. Biochim Biophys Acta 423: 610–614

    CAS  PubMed  Google Scholar 

  • Renger G, Gleiter HM, Haag E and Reifarth F (1993) Photosystem II: thermodynamics and kinetics of electron transport from Q A to QB (Q B ) and deleterious effects of copper (II). Z Naturforsch 48c: 234–240

    Google Scholar 

  • Renger G, Eckert HJ, Bergmann A, Bernarding J, Liu B, Napiwotzki A, Reifarth F and Eichler JH (1995) Fluorescence and spectroscopic studies on exciton trapping and electron transfer in Photosystem II of higher plants. Austr J Plant Physiol 22: 167–181

    CAS  Google Scholar 

  • Rigby SEJ, Nugent JHA and O’Malley PJ (1994) ENDOR and special triple resonance studies of chlorophyll cation radicals in Photosystem II. Biochemistry 33: 10043–1050

    CAS  PubMed  Google Scholar 

  • Riley K, Jankowiak, R, Rätsep M, Small GJ and Zazubovich V (2004) Evidence for highly dispersive primary charge separation kinetics and gross heterogeneity in the isolated PS II reaction center of green plants. J Phys Chem 108: 10346–10356

    CAS  Google Scholar 

  • Rinyu L, Marin EW, Takahashi E, Maroti P and Wraight CA (2003) Modulation of the free energy of the primary quinone acceptor (QA) in reaction centers from Rhodobacter sphaeroides: Contributions from the protein and protein-lipid (cardiolipin) interactions. Biochim Biophys Acta 1655: 93–101

    Google Scholar 

  • Robert B (1996) Resonance Raman studies in photosynthesis—chlorophyll and carotenoid molecules. In: Amesz J and Hoff AJ (eds) Biophysical Techniques in Photosynthesis, pp 161–174. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Robert B, Lutz M and Tiede DM (1985) Selective photochemical reduction of either of the two bacteriopheophytins in reaction centers of Rps. sphaeroides R-26. FEBS Lett 2439: 326–330

    Google Scholar 

  • Roelofs TA and Holzwarth AR (1990) In search of a putative long-lived relaxed radical pair state in closed Photosystem II. Kinetic modeling of picosecond fluorescence data. Biophys J 57: 1141–1153

    CAS  Google Scholar 

  • Roelofs TA, Lee CH and Holzwarth AR (1992) Global target analysis of picosecond chlorophyll fluorescence kinetics from pea chloroplasts. Biophys J 61: 1147–1163

    CAS  Google Scholar 

  • Ruffle SV, Wang J, Johnston HG, Gustafson TL, Hutchison RS, Minagawa J, Crofts A and Sayre RT (2001) Photosystem II peripheral accessory chlorophyll mutants in Chlamydomonas reinhardtii. Biochemical characterization and sensitivity to photo-inhibition. Plant Physiol 127: 633–644

    Article  CAS  PubMed  Google Scholar 

  • Rutherford AW and Faller P (2003) Photosystem II: Evolutionary perspectives. Phil. Trans R Soc Lond B 358: 245–253

    Article  CAS  Google Scholar 

  • Rutherford AW and Faller P (2004) The stable tyroxyl radical in Photosystem II: Why D? Biochim Biophys Acta 1655: 222–230

    CAS  PubMed  Google Scholar 

  • Schatz GH, Brock H and Holzwarth AR (1987) Picosecond kinetics of fluorescence and absorbance changes in Photosystem II particles excited by low photon density. Proc Natl Acad Sci USA 84: 8414–8418

    CAS  Google Scholar 

  • Schatz GH, Brock H and Holzwarth AR (1988) Kinetic and energetic model for the primary processes in Photosystem II. Biophys J 54: 397–405

    CAS  Google Scholar 

  • Scheer H (ed) (1991) Chlorophylls. CRC Press, Boca Raton

    Google Scholar 

  • Schilstra MJ, Rappaport F, Nugent JHA, Barnett CJ and Klug DR (1998) Proton/hydrogen transfer affects the S-state-dependent microsecond phases of P680+ reduction during water splitting. Biochemistry 37: 3974–3981

    Article  CAS  PubMed  Google Scholar 

  • Schmidt U and Reineker P (1985) Triplet excitons in molecular pairs. Mol Phys 55: 77–95

    Google Scholar 

  • Schödel R, Irrgang KD, Voigt J and Renger G (1998) Rate of carotenoid triplet formation in solubilized light-harvesting complex II (LHCII) from spinach. Biophys J 75: 3143–3153

    PubMed  Google Scholar 

  • Scholes GD, Jordanides XJ and Fleming GR (2001) Adapting the Förster theory of energy transfer for modeling dynamics in aggregated molecular assemblies. J Phys Chem B 105: 1640–1651

    Article  CAS  Google Scholar 

  • Schweitzer RH, Melkozernov AN, Blankenship RE and Brudvig GW (1998) Time-resolved fluorescence measurements of Photosystem II: The effect of quenching by oxidized chlorophyll Z. J Phys Chem B 102: 8320–8326

    Article  CAS  Google Scholar 

  • Seibert M and Wasielewski M (2003) The isolated Photosystem II reaction center: First attempts to directly measure the kinetics of primary charge separation. Photosynth Res 76: 263–268

    Article  CAS  PubMed  Google Scholar 

  • Senge MO, Renner MW, Kalisch WW and Fajer J (2000) J Chem Soc, Dalton Trans: 381

    Google Scholar 

  • Shi L-X and Schröder WP (2004) The low molecular mass subunits of the photosynthetic supracomplex, photosystem II. Biochim Biophys Acta 1608: 75–96

    CAS  PubMed  Google Scholar 

  • Shkuropatov AY, Khatypov RA, Volshchukova TS, Shkuropatova VA, Owens TG and Shuvalov VA (1997) Spectral and photochemical properties of borohydride-treated D1-D2-cytochrome b-559 complex of Photosystem II. FEBS Lett 420: 171–174

    Article  CAS  PubMed  Google Scholar 

  • Small DW, Matyushov DV and Voth GA (2003) The theory of electron transfer reactions: What may be missing? J Am Chem Soc 125: 7470–7478

    Article  CAS  PubMed  Google Scholar 

  • Smith PJ, Peterson S, Masters VM, Wydrzynski T, Styring S, Krausz E and Pace RJ (2002) Magneto-optical measurements of the pigments in fully active Photosystem II core complexes from plants. Biochemistry 41: 1981–1989

    CAS  PubMed  Google Scholar 

  • Spiedel D, Jones MR and Robert B (2002) Tuning of the redox potential of the primary electron donor in reaction centres of purple bacteria: Effects of amino acid polarity and position. FEBS Lett 527: 171–175

    Article  CAS  PubMed  Google Scholar 

  • Steffen R, Kelly AA, Huyer PJ, Dörmann P and Renger G (2005) Investigations on the reaction pattern of Photosystem II in leaves from Arabidopsis thaliana wild type plants and mutants with genetically modified lipid content: II. Galactolipid deficiency. Biochemistry 44: 3134–3142

    CAS  Google Scholar 

  • Stewart DH, Nixon PJ, Diner BA and Brudvig GW (2000) Assignment of the Qy absorbance bands of Photosystem II chromophores by low-temperature optical spectroscopy of wild-type and mutant reaction centers. Biochemistry 39: 14583–14594

    CAS  PubMed  Google Scholar 

  • Stiehl HH (1969) Untersuchungen periodisch angeregter Absorptionsänderungen im Reaktionszentrum II der Photosynthese. PhD Thesis. Technische Universität, Berlin

    Google Scholar 

  • Stiehl HH and Witt HT (1969) Quantitative treatment of the function of plastoquinone in photosynthesis. Z Naturforsch 24b: 1588–1598

    Google Scholar 

  • Stowell MHB, Phillips TM, Rees DC, Soltis SM, Abresch E and Feher G (1997) Light-induced structural changes in photosynthetic reaction center: Implications for mechanism of electron-proton transfer. Science 276: 812–816

    Article  CAS  PubMed  Google Scholar 

  • Strasser RJ and Sironval C (1972) Induction of Photosystem II activity in flashed leaves. FEBS Lett 28: 56–60

    Article  CAS  Google Scholar 

  • Sumi H (1999) Theory on rates of excitation-energy transfer between molecular aggregates through distributed transition dipoles with application to the antenna system in bacterial photosynthesis. J Phys Chem 103: 252–260

    CAS  Google Scholar 

  • Takahashi Y, Hansson Ö, Mathis P and Satoh K (1987) Primary radical pair in the Photosystem II reaction center. Biochim Biophys Acta 893: 49–59

    CAS  Google Scholar 

  • Tang D, Jankowiak R, Seibert M and Small GJ (1991) Effects of detergent on the excited state structure and relaxation dynamics of the Photosystem II reaction center: A high resolution hole burning study. Photosynth Res 27: 19–29

    Article  CAS  Google Scholar 

  • Telfer A (2002) What is β-carotene doing in the Photosystem II reaction centre? Phil Tans R Soc Lond B 357: 1431–1440

    CAS  Google Scholar 

  • Tetenkin VL, Gulyaev BA, Seibert M and Rubin AB (1989) Spectral properties of stabilized D1/D2/cytochrome b-559 Photosystem II reaction center complex. FEBS Lett 250: 459–463

    Article  CAS  Google Scholar 

  • Tiede DM and Dutton PL (1981) Orientation of the primary quinone of bacterial photosynthetic reaction centers contained in chromatophore and reconstituted membranes. Biochim Biophys Acta 637: 278–290

    CAS  Google Scholar 

  • Tretiak S, Middleton C, Chernyak V and Mukamel S (2000) Exciton Hamiltonian for the bacteriochlorophyll system in the LH2 antenna complex of purple bacteria. J Phys Chem B 104: 4519–4528

    CAS  Google Scholar 

  • Trissl HW and Lavergne J (1995) Fluorescence induction from Photosystem II: Analytical equations for the yields of photochemistry and fluorescence derived from analysis of a model including exciton-radical pair equilibrium and restricted energy transfer between photosynthetic units. Austral J Plant Physiol 22: 183–193

    CAS  Google Scholar 

  • Vacha F, Josephs DM, Durrant JR, Telfer A, Klug DR, Porter G and Barber J (1995) Photochemistry and spectroscopy of a five-chlorophyll reaction center of Photosystem II isolated by using a Cu affinity column. Proc Natl Acad Sci USA 92: 2929–2933

    CAS  PubMed  Google Scholar 

  • Vacha F, Durchan M and Siffel P (2002) Excitonic interactions in the reaction centre of Photosystem II studied by using circular dichroism. Biochim Biophys Acta 1554: 147–152

    CAS  PubMed  Google Scholar 

  • van Amerongen H, Dekker JP (2003) Light-Harvesting in Photosystem II. In: Green BR, Parson WW (eds) Light-Harvesting Antennas in Photosynthesis, pp 219–251. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • van Gorkom HJ (1974) Identification of the reduced primary electron acceptor of Photosystem II as a bound semiquinone anion. Biochim Biophys Acta 347: 439–442

    PubMed  Google Scholar 

  • van Mieghem FJE and Rutherford AW (1993) Comparative spectroscopy of photosystem-II and purple bacterial reaction centres. Biochem Soc Trans 21: 986–991

    PubMed  Google Scholar 

  • van Rensen JJS, Xu C and Govindjee (1999) Role of bicarbonate in the Photosystem II, the water-plastoquinone oxido-reductase of plant photosynthesis. Physiol Plantarum 105: 585–592

    Google Scholar 

  • Vasil’ev S, Bergmann A, Redlin H, Eichler H.-J and Renger G (1996) On the role of exchangeable hydrogen bonds for the kinetics of P +680 Q A formation and P +680\ Pheo−. recombination in Photosystem II. Biochim Biophys Acta 1276: 35–44

    Google Scholar 

  • Vasil’ev S, Schrötter T, Bergmann A, Irrgang KD, Eichler HJ and Renger G (1997) Cryoprotectant-induced quenching of chlorophyll a fluorescence from LHCII in vitro: Time resolved fluorescence and steady state spectroscopic studies. Photosynthetica 33: 553–561

    CAS  Google Scholar 

  • Vasil’ev S, Orth P, Zouni A, Owens TG and Diner B (2001) Excited-state dynamics in Photosystem II: insights from the X-ray crystal structure. Proc Natl Acad Sci USA 98: 8602–8607

    CAS  PubMed  Google Scholar 

  • Vasil’ev S, Lee C-I, Brudvig GW and Bruce D (2002) Structure-based kinetic modeling of excited-state transfer and trapping in histidine-tagged Photosystem II core complexes from Synechocystis. Biochemistry 41: 12236–12243

    Google Scholar 

  • Vasil’ev S, Brudvig GW and Bruce D (2003) The X-ray structure of Photosystem II reveals a novel electron transport pathway between P680, cytochrome b559 and the energy-quenching cation, ChlZ+. FEBS Letters 543: 159–163

    CAS  PubMed  Google Scholar 

  • Vasil’ev S, Shen J-R, Kamiya N and Bruce D (2004) The orientations of core antenna chlorophylls in Photosystem II are optimized to maximize the quantum yield of photosynthesis. FEBS Lett 561: 111–116

    CAS  PubMed  Google Scholar 

  • Vavilin D, Xu H, Lin S and Vermaas W (2002) Energy and Electron Transfer in Photosystem II of a Chlorophyll b-Containing Synechocystis sp. PCC 6803 Mutant. Biochemistry 42: 1731–1746

    Google Scholar 

  • Vos MH, Rischel C, Jones MR and Martin JL (2000) Electrochromic detection of a coherent component in the formation of the charge pair P+HL in bacterial reaction centers. Biochemistry 39: 8353–8361

    Article  CAS  PubMed  Google Scholar 

  • Wakeham MC, Goodwin MG, McKibbin C and Jones MR (2003) Photo-accumulation of the P+Q B radical pair state in purple bacterial reaction centres that lack the QA ubiquinone. FEBS Lett 540: 234–240

    Article  CAS  PubMed  Google Scholar 

  • Walz D (1997) Nonequilibrium thermodynamics applied to energy conversion in biological systems. In: Gräber P and Milazzo G (eds) Bioenergetics, pp 1–56. Birkhäuser Verlag, Basel

    Google Scholar 

  • Wang J, Gosztola D, Ruffle SV, Hemann C, Seibert M, Wasielewski MR, Hille R, Gustafson TL and Sayre RT (2002) Functional asymmetry of Photosystem II D1 and D2 peripheral chlorophyll mutants of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 99: 4091–4096

    CAS  PubMed  Google Scholar 

  • Warncke K and Dutton PS (1993) Influence of QAsite redox cofactor structure on equilibrium binding, in situ electrochemistry, and electron-transfer performance in the photosynthetic reaction center protein. Biochemistry 32: 4769–4779

    Article  CAS  PubMed  Google Scholar 

  • Warshel A, Chu ZT and Parson WW (1989) Dispersed polaron simulations of electron transfer in photosynthetic reaction centers. Science 24: 112–116

    Google Scholar 

  • Wasielewski MR, Johnson DG, Seibert M and Govindjee (1989) Determination of the primary charge separation rate in isolated Photosystem II reaction centers with 500 fs time resolution. Proc Natl Acad Sci USA 86: 524–528

    CAS  Google Scholar 

  • Watanabe T and Kobayashi M (1991) Electrochemistry of chlorophylls. In: Scheer H (ed) Chlorophylls, pp 287–315. CRC Press, Boca Raton

    Google Scholar 

  • Williams JC, Haffa ALM, McCulley JL, Woodbury NW and Allen JP (2001) Electrostatic interactions between charged amino acid residues and the bacteriochlorophyll dimer in reaction centers from Rhodobacter sphaeroides. Biochemistry 40: 15403–15407

    CAS  PubMed  Google Scholar 

  • Woodbury NW and Parson WW (1984) Nanosecond fluorescence from isolated photosynthetic reaction centers of Rhodopseudomonas sphaeroides. Biochim Biophys Acta 767: 345–361

    CAS  PubMed  Google Scholar 

  • Woodbury NW, Parson WW, Gunner MR, Prince RC and Dutton PL (1986) Radical-pair energetics and decay mechanisms in reaction centers containing anthraquinones, naphtoquinones or benzoquinones in place of ubiquinone. Biochim Biophys Acta 851: 6–22

    CAS  PubMed  Google Scholar 

  • Xiong L, Seibert M, Gusev AV, Wasielewski MR, Hemann C, Hille CR and Sayre RT (2004) Substitution of a chlorophyll into the inactive branch pheophytin-binding site impairs charge separation in Photosystem II. J Phys Chem 108: 16904–16911

    CAS  Google Scholar 

  • Xu D and Schulten K (1994) Coupling of protein motion to electron transfer in a photosynthetic reaction center: Investigating the low temperature behaviour in the framework of the spin-boson model. Chem Phys 182: 91–117

    Article  CAS  Google Scholar 

  • Xu H, Zhang R-B, Ma S-H, Qu Z-W, Zhang X-K and Zhang Q-Y (2002) Theoretical studies on the mechanism of primary electron transfer in the photosynthetic reaction center of Rhodobacter sphaeroides. Photosynth Res 74: 11–36

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Baciou L, Sebban P and Gunner MR (2002) Exploring the energy landscape for Q A to QB electron transfer in bacterial photosynthetic reaction centers: effect of substrate position and tail length on the conformational gating step. Biochemistry 41: 10021–10025

    CAS  PubMed  Google Scholar 

  • Yakovlev AG, Shkuropatov AY and Shuvalov VA (2002) Nuclear wave packet motion between P* and P+B A potential surfaces with a subsequent electron transfer to HA in bacterial reaction centers at 90 K. Electron transfer pathway. Biochemistry 41: 2667–2674

    CAS  Google Scholar 

  • Yruela I, Torrado E, Roncel M and Picorel R (2001) Light-induced absorption spectra of the D1-D2-cytochrome b559 complex of Photosystem II: Effect of methyl viologen concentration. Photosynth Res 67: 199–206

    Article  CAS  PubMed  Google Scholar 

  • Zech SG, Kurreck J, Eckert HJ, Renger G, Lubitz W and Bittl R (1997) Pulsed EPR measurement of the distance between P +680 and Q A in Photosystem II. FEBS Lett 414: 454–456

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Boussac A and Rutherford A W (2004) Low-temperature electron transfer in Photosystem II: A tyrosyl radical and semiquinone charge pair. Biochemistry 43: 13787–13795

    CAS  PubMed  Google Scholar 

  • Zheleva D, Hankamer B and Barber J (1996) Heterogeneity and pigment composition of isolated Photosystem II reaction centers. Biochemistry 35: 15074–15079

    Article  CAS  PubMed  Google Scholar 

  • Zinth W and Kaiser W (1993) Time-resolved spectroscopy of the primary electron transfer in reaction centers of Rhodobacter sphaeroides and Rhodopseudomonas viridis. In: Deisenhofer J and Norris JR (eds) The Photosynthetic Reaction Center, Vol II, pp 71–88. Academic Press, San Diego

    Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauß N, Saenger W and Orth P (2001) Crystal structure of Photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409: 739–743

    Article  CAS  PubMed  Google Scholar 

  • Zucchelli G, Jennings RC, Garlaschi FM, Cinque G, Bassi R and Cremonesi O (2002) The calculated in vitro and in vivo chlorophyll-a absorption bandshape. Biophys J 82: 378–390

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Renger, G., Holzwarth, A.R. (2005). Primary Electron Transfer. In: Wydrzynski, T.J., Satoh, K., Freeman, J.A. (eds) Photosystem II. Advances in Photosynthesis and Respiration, vol 22. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4254-X_8

Download citation

Publish with us

Policies and ethics