Skip to main content

Understanding Photosystem II Function by Artificial Photosynthesis

  • Chapter

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 22))

Summary

Inspired by the Photosystem II reaction center and the water oxidation chemistry that it performs, we aim to develop artificial photosynthesis for fuel production. Besides the original work we do in this direction, we also acquire knowledge feedback from our novel compounds. Our man-made systems create new perspectives on electron and proton transfer, bioinorganic chemistry, excitation energy transfer and other issues that are central to photosynthesis research. In this chapter we describe some of the highlights in our research and the conclusions they have generated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   509.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamsson MLA, Baudin HB, Tran A, Philouze C, Berg KE, Raymond-Johansson MK, Sun L, Åkermark B, Styring S and Hammarström L (2002) Ruthenium-manganese complexes for artificial photosynthesis: Factors controlling intramolecular electron transfer and excited-state quenching reactions. Inorg Chem 41: 1534–1544

    Article  CAS  PubMed  Google Scholar 

  • Ahlbrink R, Haumann M, Cherepanov D, Bögershausen O, Mulkidjanian A and Junge W (1998) Function of TyrosineZ in water oxidation by Photosystem II: Electrostatical promoter instead of hydrogen abstractor. Biochemistry 37: 1131–1142

    Article  CAS  PubMed  Google Scholar 

  • Åhrling KA, Peterson S and Styring S (1997) An oscillating manganese electron paramagnetic resonance signal from the S0 state of the oxygen evolving complex in Photosystem II. Biochemistry 36: 13148–13152

    CAS  PubMed  Google Scholar 

  • Andréasson L-E, Vass I and Styring S (1995) Ca2+ depletion modifies the electron transfer on both the donor and acceptor side of Photosystem II from spinach. Biochim Biophys Acta 1230: 155–164

    Google Scholar 

  • Aro E-M, Virgin I and Andersson B (1993) Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143: 113–134

    CAS  PubMed  Google Scholar 

  • Babcock GT, Espe M, Hoganson C, Lydakis-Simantiris N, McCracken J, Shi W, Styring S, Tommos C and Warncke K (1997) Tyrosyl radicals in enzyme catalysis: Some properties and a focus on photosynthetic water oxidation. Acta Chemica Scandinavica 51: 533–540

    CAS  PubMed  Google Scholar 

  • Balzani V and Carassiti V (1970) Photochemistry of Coordination Compounds. Academic Press, London

    Google Scholar 

  • Barber J and Andersson B (1992) Light can be both good and bad to photosynthesis. Trends Biochem Sci 17: 61–66

    Article  CAS  PubMed  Google Scholar 

  • Berg KE, Tran A, Raymond MK, Abrahamsson M, Wolny J, Redon S, Andersson M, Sun L, Styring S, Hammarström L, Toftlund H and Åkermark B (2001) Covalently linked Ruthenium(II)-Manganese (II) complexes: Distance dependence of quenching and electron transfer. Eur J Inorg Chem 4: 1019–1029

    Google Scholar 

  • Berglund-Baudin H, Sun L, Davydov R, Sundahl M, Styring S, Åkermark B, Almgren M and Hammarström L (1998) Intramolecular electron transfer from manganese (II) coordinatively linked to a photogenerated Ru(III)-polypyridine complex: A kinetic analysis. J Phys Chem A 102: 2512–2518

    Article  CAS  Google Scholar 

  • Bernat G, Morvaridi F, Feyziyev Y and Styring S (2002) pH-dependence of the four individual transitions in the catalytic S-cycle during photosynthetic oxygen evolution. Biochemistry 41: 5830–5843

    Article  CAS  PubMed  Google Scholar 

  • Boerner RJ and Barry BAB (1994) EPR evidence that the M+ radical which is observed in three site directed mutants of Photosystem II is a tyrosine radical. J Biol Chem 269: 134–137

    CAS  PubMed  Google Scholar 

  • Britt RD (1996) Oxygen evolution. In: Ort D and Yocum C (eds) Oxygenic Photosynthesis: The Light Reactions, pp 137–164. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Carrell, TG, Tyryshkin AM and Dismukes GC (2002) An evaluation of structural models for the photosynthetic water-oxidizing complex derived from spectroscopic and X-ray diffraction signatures. J Biol Inorg Chem 7: 2–22

    Article  CAS  PubMed  Google Scholar 

  • Chen P and Meyer TJ (1996) Electron transfer in frozen media. Inorg Chem 35: 5520–5524

    CAS  PubMed  Google Scholar 

  • Damrauer NH, Boussie TR, Devenney M and McCusker JK (1997) Effects of intraligand electron delocalization, steric tuning, and excited-state vibronic coupling on the photophysics of aryl-substituted bipyridyl complexes of Ru(II). J Am Chem Soc 119: 8253–8268

    Article  CAS  Google Scholar 

  • Dau H, Iuzzolino L and Dittmer J (2001) The tetra-manganese complex of Photosystem II during its redox cycle — X-ray absorption results and mechanistic implications. Biochim Biophys Acta 1503: 24–39

    CAS  PubMed  Google Scholar 

  • Diner BA (2001) Amino acid residues involved in the coordination and assembly of the manganese cluster of Photosystem II. Proton-coupled electron transfer of the redox-active tyrosines and its relationship to water oxidation. Biochim Biophys Acta 1503:147–163

    CAS  PubMed  Google Scholar 

  • Diner BA and Babcock GT (1996) Structure, dynamics and energy conversion efficiency in Photosystem II. In: Ort D and Yocum C (eds) Oxygenic Photosynthesis: The Light Reactions, pp 213–247. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Diner BA, Force DA, Randall DW and Britt RD (1998) Hydrogen bonding, solvent exchange, and coupled proton and electron transfer in the oxidation and reduction of redox-active tyrosine YZ in Mn-depleted core complexes of Photosystem II. Biochemistry 37: 17931–17943

    Article  CAS  PubMed  Google Scholar 

  • Diril H, Chang H-R, Zhang X, Larsen SK, Potenza JA, Pierpont CG, Schugar HJ, Isied SS and Hendrickson DN (1987) Binuclear mixed-valence MnIIMnIII complexes: Insight about the resolution of hyperfine structure in the EPR spectrum. J Am Chem Soc 109: 6207–6208

    Article  CAS  Google Scholar 

  • Dismukes GC and Siderer Y (1981) Intermediates of a polynuclear manganese center involved in the photosynthetic oxidation of water. Proc Natl Acad Sci USA 78: 274–178

    CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303: 1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Frey M (2002) Hydrogenases: Hydrogen-activating enzymes. Chem Bio Chem 3: 153–160

    CAS  PubMed  Google Scholar 

  • Gaines GL, O’Neil MP, Svec WA, Niemczyk MP and Wasielewski MR (1991) Photo-induced electron transfer in the solid state—Rate vs. free energy dependence in fixed-distance porphyrin acceptor molecules. J Am Chem Soc 113: 719–721

    Article  CAS  Google Scholar 

  • Geijer P, Morvaridi F and Styring S (2001) The S3 state of the oxygen evolving system in Photosystem II is converted to the S2Y Z state at alkaline pH. Biochemistry 40: 10881–10891

    Article  CAS  PubMed  Google Scholar 

  • Hammarström L, Barigelletti F, Flamigni L, Indelli MT, Armaroli N, Calogero G, Guardigli M, Sour A, Collin J-P and Sauvage J-P (1997) A study on delocalization of MLCT excited states by rigid bridging ligands in homometallic binuclear complexes of Ruthenium. J Phys Chem A 101: 9061–9069

    Google Scholar 

  • Hammarström L, Sun L, Magnuson A, Frapart Y, Berglund-Baudin H, Åkermark B and Styring S (1999) Mimicking Photosystem II reactions in artificial photosynthesis. Zeitschrift Phys Chem 123:157–163

    Google Scholar 

  • Hammarström L, Sun L, Åkermark B and Styring S (2001) A biomimetic approach to artificial photosynthesis: Ru(II)-poly-pyridine photosensitisers linked to tyrosine and manganese electron donors. Spectrochimica Acta A 37: 2145–2160

    Google Scholar 

  • Haumann M, Mulkidjanian A and Junge W (1999) Tyrosine-Z in oxygen-evolving Photosystem II: A hydrogen-bonded tyrosinate. Biochemistry 38: 1258–1267

    Article  CAS  PubMed  Google Scholar 

  • Hays A-MA, Vassiliev IR, Golbeck JH and Debus RJ (1998) Role of D1-His190 in proton-coupled electron transfer reactions in Photosystem II: A chemical complementation study. Biochemistry 37: 11352–11365

    Article  CAS  PubMed  Google Scholar 

  • Hays A-MA, Vassiliev IR, Golbeck JH and Debus RJ (1999) Role of D1-His190 in the proton-coupled oxidation of tyrosine YZ in manganese-depleted Photosystem II. Biochemistry 38: 11851–11865

    Article  CAS  PubMed  Google Scholar 

  • Hogansson CW and Babcock GT (1997) A metalloradical mechanism for the generation of oxygen from water in photosynthesis. Science 277: 1953–1956

    Google Scholar 

  • Hoganson CW, Lydakis-Simantiris N, Tang X-S, Tommos C, Warncke K, Babcock GT, Diner BA, McCracken J and Styring S (1995) A hydrogen-atom abstraction model for the function of YZ in photosynthetic oxygen evolution. Photosynth Res 46: 177–184

    Article  CAS  Google Scholar 

  • Horner O, Anxolabehere-Mallart E, Chariot MF, Tchertanov L, Guilhem J, Mattioli TA, Boussac A and Girerd JJ (1999) A new manganese dinuclear complex with phenolate ligands and a single unsupported oxo bridge. Storage of two positive charges within less than 500 mV. Relevance to photosynthesis. Inorganic Chemistry 38: 1222–1232

    Article  CAS  PubMed  Google Scholar 

  • Huang P, Magnuson A, Lomoth R, Abrahamsson M, Tamm M, Sun L, van Rotterdam B, Park J, Hammarström L, Åkermark B and Styring S (2002) Three-step oxidation of a MnII,IIdimer to MnIII,IV by photogenerated RuIII: Towards a functional mimic of the water oxidizing center in Photosystem II. J Inorg Biochemistry 91: 159–172

    CAS  Google Scholar 

  • Huang P, Högblom J, Anderlund MF, Sun L, Magnuson A and Styring S (2004) Light-induced multistep oxidation of dinuclear manganese complexes for artificial photosynthesis. J Inorg Biochemistry 98: 733–745

    CAS  Google Scholar 

  • Ioannidis N and Petrouleas V (2000) Electron paramagnetic resonance signals from the S3 state of the oxygen evolving complex: A broadened radical signal induced by low-temperature near-infrared light illumination. Biochemistry 39: 5246–5254

    Article  CAS  PubMed  Google Scholar 

  • Iuzzolino L, Dittmer J, Dorner W, Meyer-Kaucke W and Dau H (1998) X-ray absorption spectroscopy on layered Photosystem II membrane particles suggests manganese-centered oxidation of the oxygen-evolving complex for the S0–S1; S1–S2, and S2–S3 transitions of the water oxidation cycle. Biochemistry 37: 17112–17119

    Article  CAS  PubMed  Google Scholar 

  • Jegerschöld C and Styring S (1991) Fast oxygen-independent degradation of the D1 reaction center protein in Photosystem II. FEBS Lett 280: 87–90

    Article  PubMed  Google Scholar 

  • Jegerschöld C and Styring S (1992) Photoinhibition of Cl-depleted thylakoid membranes. Effects of illumination under anaerobic conditions. In: Barber J, Medrane H and Guerrero MG (eds) Trends in Photosynthesis Research, pp 59–69. Intercept Ltd, Andover

    Google Scholar 

  • Jegerschöld C and Styring S (1996) Spectroscopic characterization of intermediate steps involved in donor-side photoinhibition of Photosystem II. Biochemistry 35: 7794–7801

    PubMed  Google Scholar 

  • Jegerschöld C, Virgin I and Styring S (1990) Light-dependent degradation of the D1 protein in Photosystem-II is accelerated after inhibition of the water splitting reaction. Biochemistry 29: 6179–6186

    PubMed  Google Scholar 

  • Juris A, Balzani V, Barigelletti F, Campagna S, Belser P and von Zelewsky A (1988) Ru(II) polypyridine complexes: Photophysics, photochemistry, electrochemistry and chemiluminescence. Coord Chem Rev 84: 85–277

    Article  CAS  Google Scholar 

  • Kamiya N and Shen J-R (2003) Crystal structure of oxygen-evolving Photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution. Proc Natl Acad Sci USA 100: 98–103

    Article  CAS  PubMed  Google Scholar 

  • Krieger A, Rutherford AW and Johnson GN (1995) On the determination of redox midpoint potential of the primary quinone electron acceptor, QA, in Photosystem II. Biochim Biophys Acta 1229: 193–201

    Google Scholar 

  • Kuzek D and Pace RJ (2001) Probing the Mn oxidation states in the OEC. Insights from spectroscopic, computational and kinetic data. Biochim Biophys Acta 1503: 123–137

    CAS  PubMed  Google Scholar 

  • Lavergne J and Junge W (1993) Proton release during the redox cycle of the water oxidase Photosynth Res 38: 279–296

    Article  CAS  Google Scholar 

  • Liang WC, Roelofs TA, Cinco RM, Rompel A, Latimer MJ, Yu WO, Sauer K, Klein MP and Yachandra VK (2000) Structural change of the Mn cluster during the S2 → S3 state transition of the oxygen-evolving complex of Photosystem II. Does it reflect the onset of water/substrate oxidation? Determination by Mn X-ray absorption spectroscopy. J Am Chem Soc 122: 3399–3412

    CAS  Google Scholar 

  • Lomoth R, Huang P, Zheng J, Sun L, Hammarström L, Åkermark B and Styring S (2002) Synthesis and characterization of a dinuclear manganese(III,III) complex with three phenolate ligands. Eur J Inorg Chem 2965–2974

    Google Scholar 

  • Ma C and Barry BAB (1996) Electron paramagnetic resonance characterization of tyrosine radical M+, in site-directed mutants of Photosystem II. Biophys J 71: 1961–1972

    CAS  PubMed  Google Scholar 

  • Magnuson A, Berglund H, Korall P, Hammarström L, Åkermark B, Styring S and Sun L (1997) Mimicking electron transfer reactions in Photosystem II: Synthesis and photochemical characterization of a ruthenium(II) tris-bipyridyl complex with a covalently linked tyrosine. J Am Chem Soc 119: 10720–10725

    Article  CAS  Google Scholar 

  • Magnuson A, Frapart Y, Abrahamsson M, Horner O, Åkermark B, Sun L, Girerd J-J, Hammarström L and Styring S (1999) A biomimetic model system for the water oxidizing triad in Photosystem II. J Am Chem Soc 121: 89–96

    Article  CAS  Google Scholar 

  • Mamedov F, Sayre RT and Styring S (1998) Involvement of histidine 190 on the D1 protein in electron/proton transfer reactions on the donor side of Photosystem II. Biochemistry 37: 14245–14256

    Article  CAS  PubMed  Google Scholar 

  • Marcus RA and Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811: 265–322

    CAS  Google Scholar 

  • Matsukawa T, Mino H, Yoneda D and Kawamori A (1999) Dual-mode EPR study of new signals from the S3-state of oxygen-evolving complex in Photosystem II. Biochemistry 38: 4072–4077

    Article  CAS  PubMed  Google Scholar 

  • Messinger J, Robblee JH, Yu WO, Sauer K, Yachandra VK and Klein MP (1997) The S0 state of the oxygen-evolving complex in Photosystem II is paramagnetic: Detection of an EPR multiline signal. J Am Chem Soc 119: 11349–11350

    Article  CAS  Google Scholar 

  • Mino H, Kawamori A, Matsukawa T and Ono T (1998) Light-induced high-spin signals from the oxygen evolving center in Ca2+-depleted Photosystem II studied by dual mode electron paramagnetic resonance spectroscopy. Biochemistry 37: 2794–2799

    Article  CAS  PubMed  Google Scholar 

  • Nugent JH (ed) (2001) Special Issue: Photosynthetic Water Oxidation. Biochim Biophys Acta 1503: 1–259

    Google Scholar 

  • Nugent JHA, Rich AM and Evans MCW (2001) Photosynthetic water oxidation: Towards a mechanism. Biochim Biophys Acta 1503: 138–146

    CAS  PubMed  Google Scholar 

  • Nugent JHA, Muhiuddin IP and Evans MCW (2002) Electron transfer from the water oxidizing complex at cryogenic temperatures: The S1 to S2 Step. Biochemistry 41: 4117–4126

    Article  CAS  PubMed  Google Scholar 

  • Pecoraro V (ed) (1992) Manganese Redox Systems. Wiley, New York

    Google Scholar 

  • Pecoraro VL, Baldwin MJ, Caudle MT, Hsieh W-Y and Law NA (1998) A proposal for water oxidation in Photosystem II. Pure Appl Chem 70: 925–929

    CAS  Google Scholar 

  • Peloquin JM and Britt RD (2001) EPR/ENDOR characterization of the physical and electronic structure of the OEC Mn cluster. Biochim Biophys Acta 1503: 96–110

    CAS  PubMed  Google Scholar 

  • Porter GB and Schäfer HL (1964) Zur Frage der Lumineszenz bei Ubergangsmetallverbindungen. Ber Bunsen-Ges Phys Chem 68: 316–331

    CAS  Google Scholar 

  • Prasil O, Adir N and Ohad I (1992) Dynamics of Photosystem II: Mechanism of photoinhibition and recovery process. In: Barber J (ed) Current Topics in Photosynthesis Vol 11, pp 220–250. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Rappaport F and Lavergne J (2001) Coupling of electron and proton transfer in the photosynthetic water oxidase. Biochim Biophys Acta 1503: 246–259

    CAS  PubMed  Google Scholar 

  • Renger G (2001) Photosynthetic water oxidation to molecular oxygen: Apparatus and mechanism. Biochim Biophys Acta 1503:210–228

    CAS  PubMed  Google Scholar 

  • Robblee JH, Cinco RM and Yachandra VK (2001) X-ray spectroscopy-based structure of the Mn cluster and mechanism of photosynthetic oxygen evolution. Biochim Biophys Acta 1503: 7–23

    CAS  PubMed  Google Scholar 

  • Rova M, Franzén L-G, Fredriksson P-O and Styring S (1993) Photosystem II in a mutant of Chlamydomonas reinhardtii I lacking the 23 kDa psbP protein is sensitive to photoinhibition in the absence of chloride. Photosynth Res 39: 75–83

    Google Scholar 

  • Rova M, MacEwen B, Fredriksson PO and Styring S (1996) Photoactivation and photoinhibition are competing in a mutant of Chlamydomonas reinhardtii lacking the 23kDa subunit of Photosystem II. J Biol Chem 271: 28918–28924

    CAS  PubMed  Google Scholar 

  • Rova M, Mamedov F, Magnuson A, Fredriksson P-O and Styring S (1998) Coupled activation of the donor and the acceptor Side of Photosystem II during photoactivation of the oxygen evolving cluster. Biochemistry 37: 11039–11045

    Article  CAS  PubMed  Google Scholar 

  • Siegbahn PEM and Crabtree RH (1999) Manganese oxyl radical intermediates and O-O bond formation in photosynthetic oxygen evolution and a proposed role for the calcium cofactor in Photosystem II. J Am Chem Soc 121: 117–127

    Article  CAS  Google Scholar 

  • Sjödin M, Styring S, Åkermark B, Sun L and Hammarström L (2000) Proton coupled electron transfer from tyrosine in a tyrosine-ruthenium-tris-bipyridine complex: Comparison with tyrosineZ oxidation in Photosystem II. J Am Chem Soc 122: 3932–3936

    Google Scholar 

  • Sjödin M, Styring S, Åkermark B, Sun L and Hammarström L (2002) The mechanism for proton coupled electron transfer from tyrosine in a model complex and comparisons with tyrosine Z oxidation in Photosystem II. Phil Trans B 357: 1471–1478

    Google Scholar 

  • Sjödin M, Ghanem R, Polivka T, Pan J, Styring S, Sun L, Sundström V and Hammarström L (2004) Tuning proton coupled electron transfer from tyrosine: A competition between concerted and step-wise mechanisms. Phys Chem Chem Phys 6: 4851–4858

    Article  Google Scholar 

  • Steinberg-Yfrach G, Rigaud J-L, Durantini EN, Moore AL, Gust D and Moore TA (1998) Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane. Nature 392: 479–482

    CAS  PubMed  Google Scholar 

  • Styring S and Jegerschöld C (1994) Light induced reactions impairing the electron transfer through Photosystem II. In: Baker NR and Bowyer JR (eds) Photoinhibition of Photosynthesis, pp 51–73. BIOS Scientific, Oxford

    Google Scholar 

  • Styring S, Virgin I, Ehrenberg A and Andersson B (1990) Strong light photoinhibition of electron transport in Photosystem II. Impairment of the function of the first quinone acceptor QA. Biochim Biophys Acta 1015: 269–278

    CAS  Google Scholar 

  • Sun L, Berglund H, Davydov R, Norrby T, Hammarström L, Korall P, Börje A, Philouze C, Berg K, Tran A, Andersson M, Stenhagen G, Mårtensson J, Almgren M, Styring S and Åkermark B (1997) Binucelar ruthenium-manganese complexes as simple artificial models for Photosystem II in green plants J Am Chem Soc 119: 6996–7004

    CAS  Google Scholar 

  • Sun L, Åkermark B, Hammarström L and Styring S (1999) Intramolecular electron transfer from manganese to photogenerated Ru(bpy) 3+3 . A functional mimic of the photoevents on the donor side of Photosystem II. Trends Inorg Chem 6: 151–155

    CAS  Google Scholar 

  • Sun L, Raymond MK, Magnuson A, LeGourriérec D, Tamm M, Abrahamsson M, Kenéz PH, Mårtensson J, Stenhagen G, Hammarström L, Styring S and Åkermark B (2000) Towards an artificial model for Photosystem II: A manganese (II,II) dimer covalently linked to ruthenium(II)tris-bipyridine via a tyrosine derivative. J Inorg Biochemistry 78: 15–22

    CAS  Google Scholar 

  • Sun L, Hammarström L, Åkermark B and Styring S (2001) Towards artificial photosynthesis: Ruthenium-manganese chemistry for energy production. Chem Soc Rev 30: 36–49

    Article  CAS  Google Scholar 

  • Sutin N (1982) Nuclear, electronic, and frequency factors in electron-transfer reactions. Acc Chem Res 15: 275–282

    Article  CAS  Google Scholar 

  • Svensson B, Vass I and Styring S (1991) Sequence analysis of the D1 and D2 reaction center proteins of Photosystem II. Z Naturforsch 46c: 62–73

    Google Scholar 

  • Svensson B, Etchebest C, Tuffery P, van Kan P, Smith J and Styring S (1996) A model for the Photosystem II reaction centre core including the structure of the primary donor P680. Biochemistry 35: 14486–14502

    Article  CAS  PubMed  Google Scholar 

  • Tommos CT and Babcock GT (2000) Proton and hydrogen currents in photosynthetic water oxidation. Biochim Biophys Acta 1458: 199–219

    CAS  PubMed  Google Scholar 

  • Tommos C, Tang X-S, Warncke K, Hoganson CW, Styring S, McCracken J, Diner BA and Babcock GT (1995) Spin-density distribution, and hydrogen bonding of the redox-active tyrosine YZ in Photosystem II from multiple electron magnetic-resonance spectroscopies: Implications for photosynthetic oxygen evolution. J Am Chem Soc 117: 10325–10335

    Article  CAS  Google Scholar 

  • Treadway JA, Loeb B, Lopez R, Anderson PA, Keene FR and Meyer TJ (1996) Effect of delocalization and rigidity in the acceptor ligand on MLCT excited-state decay. Inorg Chem 35:2242–2246

    Article  CAS  PubMed  Google Scholar 

  • van Wijk KJ, Nilsson LO and Styring S (1994) Synthesis of reaction center proteins and reactivation of redox components during repair of Photosystem II after light induced inactivation. J Biol Chem 269: 28382–28392

    PubMed  Google Scholar 

  • Vass I and Styring S (1991) pH-dependent charge-equilibria between tyrosine D and the S-states in Photosystem II. Estimation of relative midpoint potentials. Biochemistry 30: 830–839

    Article  CAS  PubMed  Google Scholar 

  • Vrettos JS, Limburg J and Brudvig GW (2001) Mechanism of photosynthetic water oxidation: combining biophysical studies of Photosystem II with inorganic model chemistry. Biochim Biophys Acta 1503: 229–245

    CAS  PubMed  Google Scholar 

  • Wasielewski MR, Johnson DG, Svec WA, Kersey KM and Minjsek DW (1988) Achieving high quantum yield charge separation in porphyrin-containing donor-acceptor molecules at 10 K. J Am Chem Soc 110: 7219–7221

    Article  CAS  Google Scholar 

  • Yachandra VK, Sauer K and Klein MP (1996) Manganese cluster in Photosystem II: Where plants oxidize water to dioxygen. Chem Rev 96: 2927–2950

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi T, Mino H, Matsukawa T, Kawamori A and Ono T (1997) Parallel polarization electron paramagnetic resonance studies of the S-l-state manganese cluster in the photosynthetic oxygen-evolving system. Biochemistry 36: 7520–7526

    Article  CAS  PubMed  Google Scholar 

  • Zhang C and Styring S (2003) Formation of split electron paramagnetic resonance signals in Photosystem II suggests that TyrosineZ can by photooxidized at 5 K in the S0 and S1 states of the oxygen-evolving complex. Biochemistry 42: 8066–8076

    CAS  PubMed  Google Scholar 

  • Zouni A, Witt H-T, Kern J, Fromme P, Krauss N, Saenger W and Orth P (2001) Crystal structure of Photosystem II from Synechococcus elongatus at 3.8Å resolution. Nature 409: 739–743

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Magnuson, A., Styring, S., Hammarström, L. (2005). Understanding Photosystem II Function by Artificial Photosynthesis. In: Wydrzynski, T.J., Satoh, K., Freeman, J.A. (eds) Photosystem II. Advances in Photosynthesis and Respiration, vol 22. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4254-X_35

Download citation

Publish with us

Policies and ethics