Skip to main content

Distal and Extrinsic Photosystem II Antennas

  • Chapter
Photosystem II

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 22))

Summary

The distal and extrinsic light-harvesting antennas of Photosystem II (PS II) provide the capability to match electron flow through Photosystem I thus allowing for regulated responses to environmental changes. In this chapter we provide a concise up-to-date description of these antenna complexes and discuss what is known about their function. The cyanobacteria and red algal PS II antennas are phycobiliproteins organized into complex membrane-extrinsic structures called phycobilisomes. A small group of cyanobacteria lack phycobilisomes and instead use the membrane-intrinsic prochlorophyte chlorophyll (Chl) a/b proteins. PS II of eukaryotes is primarily served by members of the light-harvesting complex (LHC) superfamily which has become widely diversified into Chl a/b and Chl a/c antennas. As members of the LHC superfamily, cryptophyte algae also have novel phycobilins in the thylakoid lumen, and dinoflagellate algae have a unique peridinin-Chl a protein. Atomic resolution structures of these two antennas and the major plant LHC are opening up a new era in understanding energy transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson J, Walters RG, Horton P and Jansson S (2001) Antisense inhibition of the photosynthetic antenna proteins CP29 and CP26: Implications for the mechanism of protective energy dissipation. Plant Cell 13: 1193–1204

    Article  CAS  PubMed  Google Scholar 

  • Andersson J, Wentworth M, Walters RG, Howard CA, Ruban AV, Horton P and Jansson S (2003) Absence of the Lhcbl and Lhcb2 proteins of the light-harvesting complex of Photosystem II-effects on photosynthesis, grana stacking and fitness. Plant J 35: 350–361

    CAS  PubMed  Google Scholar 

  • Apt KE, Collier JL and Grossman AR (1995a) Evolution of the phycobiliproteins. J Mol Biol 248: 79–96

    Article  CAS  PubMed  Google Scholar 

  • Apt KE, Clendennen SK, Powers DA and Grossman AR (1995b) The gene family encoding the fucoxanthin chlorophyll proteins from the brown alga Macrocystis pyrifera. Mol Gen Gen 246: 455–464

    CAS  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kröger N, Lau WWY, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP and Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science 306: 79–86

    Article  CAS  PubMed  Google Scholar 

  • Bassi R and Caffarri S (2000) Lhc proteins and the regulation of photosynthetic light harvesting function by xanthophylls. Photosynth Res 64: 243–256

    Article  CAS  PubMed  Google Scholar 

  • Bassi R, Sandonà D and Croce R (1997) Novel aspects of chlorophyll a/b-binding proteins. Physiol Plant 100: 769–779

    Article  CAS  Google Scholar 

  • Bassi R, Croce R, Cugini D and Sandonà D (1999) Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites. Proc Natl Acad Sci USA 96: 10056–10061

    Article  CAS  PubMed  Google Scholar 

  • Bathke L, Rhiel E, Krumbein WE and Marquardt J (1999) Biochemical and immunochemical investigations on the light-harvesting system of the cryptophyte Rhodomonas sp.: Evidence for a Photosystem I specific antenna. Plant Biol 1: 516–523

    CAS  Google Scholar 

  • Bergantino E, Segalla A, Brunetta A, Teardo E, Rigoni F, Giacometti GM and Szabò I (2003) Lihgt-and pH-dependent structural changes in the PsbS subunit of Photosystem II. Proc Natl Acad Sci USA 100: 15265–15270

    Article  CAS  PubMed  Google Scholar 

  • Bhaya D and Grossman AR (1993) Characterization of gene clusters encoding the fucoxanthin chlorophyll proteins of the diatom Phaeodactylum tricornutum. Nucleic Acids Res 21: 4458–4466

    CAS  PubMed  Google Scholar 

  • Bibby TS, Nield J, Partensky F and Barber J (2001a) Antenna ring around Photosystem I. Nature 413: 590

    Article  CAS  PubMed  Google Scholar 

  • Bibby TS, Nield J and Barber J (2001b) A Photosystem II-like protein, induced under iron-stress, forms an antenna ring around the Photosystem I trimer in cyanobacteria. Nature 412: 743–745

    Article  CAS  PubMed  Google Scholar 

  • Bibby TS, Mary I, Nield J, Partensky F and Barber J (2003a) Low-light-adapted Prochlorococcus species possess specific antennae for each photosystem. Nature 424: 1051–1054

    Article  CAS  PubMed  Google Scholar 

  • Bibby TS, Nield J, Chen M, Larkum AWD and Barber J (2003b) Structure of a Photosystem II supercomplex isolated from Prochloron didemni retaining its chlorophyll a/b light-harvesting system. Proc Natl Acad Sci USA 100: 9050–9054

    Article  CAS  PubMed  Google Scholar 

  • Biggins J, Campbell CL and Bruce D (1983) Mechanism of the light state transition in photosynthesis II. Analysis of phosphorylated polypeptides in the red alga Porphyridium cruentum. Biochim Biophys Acta 767: 138–144

    Google Scholar 

  • Boekema EJ, Hankamer B, Bald D, Kruip J, Nield J, Boonstra AF, Barber J and Rögner M (1995) Supramolecular structure of the Photosystem II complex from green plants and cyanobacteria. Proc Natl Acad Sci USA 92: 175–179

    CAS  PubMed  Google Scholar 

  • Boekema EJ, van Roon H, Calkoen F, Bassi R and Dekker JP (1999a) Multiple types of association of Photosystem II and its light-harvesting antenna in partially solubilized Photosystem II membranes. Biochemistry 38: 2233–2239

    Article  CAS  PubMed  Google Scholar 

  • Boekema EJ, van Roon H, van Breemen JFL and Dekker JP (1999b) Supramolecular organization of Photosystem II and its light-harvesting antenna in partially solubilized Photosystem II membranes. Eur J Biochem 266: 444–452

    Article  CAS  PubMed  Google Scholar 

  • Boekema EJ, van Breemen JFL, van Roon H and Dekker JP (2000) Conformational changes in Photosystem II supercomlexes upon removal of extrinsic subunits. Biochemistry 39: 12907–12915

    Article  CAS  PubMed  Google Scholar 

  • Boekema EJ, Hifney A, Yakushevska AE, Piotrowski M, Keegstra W, Berry S, Michel K-P, Pistorius EK and Kruip J (2001) A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria. Nature 412: 745–748

    Article  CAS  PubMed  Google Scholar 

  • Bruce D, Biggins J, Steiner T and Thewalt M (1986) Excitation energy transfer in the cryptophytes. Fluorescence excitation spectra and picosecond time-resolved emission spectra of intact algae at 77 K. Photochem Photobiol 44: 519–525

    CAS  Google Scholar 

  • Büchel C (2003) Fucoxanthin-chlorophyll proteins in diatoms: 18 and 19 kDa subunits assemble into different oligomeric states. Biochemistry 42: 13027–13034

    PubMed  Google Scholar 

  • Büchel C and Wilhelm C (1993) Isolation and characterization of a Photosystem I-associated antenna (LHC I) and a Photo-system I-core complex from the chlorophyll c-containing alga Pleurochloris meiringensis (Xanthophyceae) J Photochem Photobiol B 20: 87–93

    Article  Google Scholar 

  • Burnap RL, Troyan T and Sherman LA (1993) The highly abundant chlorophyll-protein complex of iron-deficient Synechococcus sp. PCC7942 (CP43’) is encoded by the isiA gene. Plant Physiol. 103: 893–902

    Article  CAS  PubMed  Google Scholar 

  • Caron L, Douady D, de Martino A and Quinet M (2001) Light harvesting in brown algae. Cahiers de Biologie Marine 42: 109–124

    Google Scholar 

  • Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5: 174–182

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Hiller RG, Howe CJ and Larkum AWD (2005) Unique origin and lateral transfer of prokaryotic chlorophyll-b and chlorophyll-d light-harvesting systems. Mol Biol Evol 22: 21–28.

    PubMed  Google Scholar 

  • Croce R, Remelli R, Varotto C, Breton J and Bassi R (1999a) The neoxanthin binding site of the major light harvesting complex (LHCII) from higher plants. FEBS Lett 456: 1–6

    Article  CAS  PubMed  Google Scholar 

  • Croce R, Weiss S and Bassi R (1999b) Carotenoid-binding sites of the major light-harvesting complex II of higher plants. J Biol Chem 42: 29613–29623

    Google Scholar 

  • Croce R, Canino G, Ros F and Bassi R (2002) Chromophore organization in the higher-plant Photosystem II antenna proteins CP26. Biochemistry 41: 7334–7343

    Article  CAS  PubMed  Google Scholar 

  • Croce R, Muller MG, Bassi R and Holzwarth AR (2003) Chlorophyll b to chlorophyll a energy transfer kinetics in the CP29 antenna complex: A comparative femtosecond absorption study between native and reconstituted proteins. Biophys J 84: 2508–2516

    CAS  PubMed  Google Scholar 

  • Das SK and Frank HA (2002) Pigment compositions, spectral properties, and energy transfer efficiencies between the xanthophylls and chlorophylls in the major and minor pigment-protein complexes of Photosystem II. Biochemistry 41: 13087–13095

    CAS  PubMed  Google Scholar 

  • Deane JA, Fraunholz M, Su V, Maier U-G, Martin W, Durnford DG and McFadden GI (2000) Evidence for nucleomorph to host nucleus gene transfer: Light-harvesting complex proteins from cryptomonads and chlorarachniophytes. Protist 151: 239–252

    Article  CAS  PubMed  Google Scholar 

  • Delphin E, Duval J-C, Etienne A-L and Kirilovsky D (1998) ΔpH-dependent Photosystem II fluorescence quenching induced by saturating, multiturnover pulses in red algae. Plant Physiol 118: 103–113

    Article  CAS  PubMed  Google Scholar 

  • De Martino A, Douady D, Quinet-Szely M, Rousseau B, Crépineau F, Apt K and Caron L (2000) The light-harvesting antenna of brown algae. Highly homologus proteins encoded by a multigene family. Eur J Biochem 267: 5540–5549

    PubMed  Google Scholar 

  • Dijkman NA and Kroon BMA (2002) Indications for chlororespiration in relation to light regime in the marine diatom Thalassiosira weissflogii. J Photochem Photobiol B 66: 179–187

    Article  CAS  PubMed  Google Scholar 

  • Dufresne A, Salanoubat M, Partensky F, Artiguenave F, Axmann IM, Barbe V, Duprat S, Galperin MY, Koonin EV, Le Gall F, Makarova KS, Ostrowski M, Oztas S, Robert C, Rogozin IB, Scanlan DJ, Tandeau de Marsac N, Weissenbach J, Wincker P, Wolf YI and Hess WR (2003) Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc Natl Acad Sci. 100: 10020–10025

    Article  CAS  PubMed  Google Scholar 

  • Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E and Green BR (1999) A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution. J Mol Evol 48: 59–68

    CAS  PubMed  Google Scholar 

  • Elrad D and Grossman AR (2004) A genome’s-eye view of the light-harvesting polypeptides of Chlamydomonas reinhardtii. Curr Genet 45: 61–75

    Article  CAS  PubMed  Google Scholar 

  • Eppard M and Rhiel E (1998) The genes encoding light-harvesting subunits of Cyclotella cryptica (Bacillariophyceae) constitute a complex and heterogeneous family. Mol Gen Genet 260: 335–345

    CAS  PubMed  Google Scholar 

  • Eppard M, Krumbein WE, von Haeseler A and Rhiel E (2000) Characterization of fcp4 and fcpl2, two additional genes encoding light harvesting proteins of Cyclotella cryptica (Bacillariophyceae) and phylogenetic analysis of this complex gene family. Plant Biol 2: 283–289

    Article  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303: 1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT and Falkowski P (1998) Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281: 237–240

    Article  CAS  PubMed  Google Scholar 

  • Frank HA, Young AJ, Britton G and Cogdell RJ (eds) (1999) Photochemistry of Carotenoids. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Ganetag U, Kühlheim C, Andersson J and Jansson S (2004) Is each light-harvesting complex protein important for plant fitness? Plant Physiol 134: 502–509

    Google Scholar 

  • Gantt E (1980) Photosynthetic cryptophytes. In: Cox ER (ed) Phytoflagellates, pp 381–405. Elsevier/North-Holland, Amsterdam

    Google Scholar 

  • Gantt E, Edwards MR and Provasoli L (1971) Chloroplast structure of the Cryptophyceae: Evidence for phycobiliproteins within intrathylakoidal spaces. J Cell Biol 48: 280–290

    Article  CAS  Google Scholar 

  • Gantt E, Clement-Metral JD and Chereskin BM (1988) Photosystem II-phycobilisome complex preparations. In: Packer L and Glazer AN (eds) Methods in Enzymology: Cyanobacteria Vol 167, 287–290. Academic Press, San Diego

    Google Scholar 

  • Gantt E, Grabowski B and Cunningham FX (2003) Antenna systems of red algae: phycobilisomes with Photosystem II and chlorophyll complexes with Photosystem I. In: Green BR and Parson WW (eds) Light-Harvesting Antennas in Photosynthesis, pp 307–322. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Garczarek L, van der Staay GWM, Thomas JC and Partensky F (1998) Isolation and characterization of Photosystem I from two strains of the marine oxychlorobacterium Prochlorococcus. Photosynth Res 56: 131–141

    Article  CAS  Google Scholar 

  • Garczarek L, Hess WR, Holtzendorff J, van der Staay GWM and Partensky F (2000) Multiplication of antenna genes as a major adaptation to low light in a marine prokaryote. Proc Natl Acad Sci 97: 4098–4101

    Article  CAS  PubMed  Google Scholar 

  • Garczarek L, van der Staay GWM, Hess WR, Le Gall F and Partensky F (2001) Expression and phylogeny of the multiple antenna genes of the low-light adapted strain Prochlorococcus marinus SS120 (Oxyphotobacteria). Plant Mol Biol 46: 683–693

    Article  CAS  PubMed  Google Scholar 

  • Garrido JL, Otero J, Maestro MA and Zapata M (2000) The main nonpolar chlorophyll c from Emiliana huxleyi (Prymnesiophyceae) is a chlorophyll c2-monogalactosyldiacylglyceride ester: A mass spectrometry study. J Phycol 36: 497–505

    Article  CAS  Google Scholar 

  • Gibbs SP(1981) The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann NY Acad Sci 361: 193–208

    Google Scholar 

  • Giuffra E, Zucchelli G, Sandonà D, Croce R, Cugini D, Garlaschi FM, Bassi R and Jennings RC (1997) Analysis of some optical properties of a native and reconstituted Photosystem II antenna complex, CP29—pigment binding sites can be occupied by chlorophyll a or chlorophyll b and determine spectral forms. Biochemistry 36: 12984–12993

    Article  CAS  PubMed  Google Scholar 

  • Glazer AN and Wedemayer GJ (1995) Cryptomonad biliproteins— an evolutionary perspective. Photosynth Res 46: 93–105

    Article  CAS  Google Scholar 

  • Grabowski B, Cunningham FX Jr and Gantt E (2001) Chlorophyll and carotenoid binding in a simple red algal light-harvesting complex crosses phylogenetic lines. Proc Natl Acad Sci USA 98: 2911–2916

    Article  CAS  PubMed  Google Scholar 

  • Gradinaru CC, van Grondelle R and van Amerongen H (2003) Selective interaction between xanthophylls and chlorophylls in LHCII probed by femtosecond transient absorption spectroscopy. J Phys Chem B 107: 3938–3943

    Article  CAS  Google Scholar 

  • Green BR (2001) Was ‘molecular opportunism’ a factor in the evolution of different photosynthetic light-harvesting pigment systems? Proc Natl Acad Sci USA 98: 2119–2121

    Article  CAS  PubMed  Google Scholar 

  • Green BR (2003) The evolution of light-harvesting antennas. In: Green BR and Parson WW (eds) Light-Harvesting Antennas in Photosynthesis, pp 129–168. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Green BR and Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47: 685–714

    Article  CAS  PubMed  Google Scholar 

  • Green BR and Kühlbrandt W (1995) Sequence conservation of light-harvesting and stress-response proteins in relation to the three-dimensional molecular structure of LHCII. Photosynth Res 44: 139–148

    Article  CAS  Google Scholar 

  • Green BR and Parson WW (eds) (2003) Light-Harvesting Antennas in Photosynthesis. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Green BR and Pichersky E (1994) Hypothesis for the evolution of three-helix Chl a/b and Chl a/c light-harvesting antenna proteins from two-helix and four-helix ancestors. Photosynth Res 39: 149–162

    Article  CAS  Google Scholar 

  • Green BR, Anderson JM and Parson WW (2003) Photosynthetic membranes and their light-harvesting antennas. In: Green BR and Parson WW (eds) Light-Harvesting Antennas in Photosynthesis, pp 1–28. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Grossman AR, van Wassenbergen LG and Kehoe D (2003) Environmental regulation of phycobilisome biosynthesis. In: Green BR and Parson WW (eds) Light-Harvesting Antennas in Photosynthesis, pp 471–494. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Harrer R, Bassi R, Testi MG and Schäfer C (1998) Nearest-neighbor analysis of a Photosystem II complex from Marchantia polymorpha L. (liverwort), which contains reaction center and antenna proteins. Eur J Biochem 255: 196–205

    Article  CAS  PubMed  Google Scholar 

  • Haxo FT (1960) The wavelength dependence of photosynthesis and the role of accessory pigments. In: Allen MB (ed) Comparative Biochemistry of Photoreactive Systems, pp 339–360. Academic Press, New York and London

    Google Scholar 

  • Heddad M and Adamska I (2002) The evolution of light stress proteins in photosynthetic organisms. Comp Funct Genomics 3: 504–510

    CAS  Google Scholar 

  • Hess WR, Parentsky F, van der Staay GW, Garcia-Fernandez JM, Börner T and Vaulot D (1996) Coexistence of phycoerythrin and a chlorophyll a/b antennae in a marine prokaryote. Proc Natl Acad Sci USA 93: 11126–11130

    CAS  PubMed  Google Scholar 

  • Hihara Y, Kamei A, Kanehisa M, Kaplan A and Ikeuchi M (2001) DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13: 793–806

    Article  CAS  PubMed  Google Scholar 

  • Hiller RG (1999) Carotenoids as components of the light-harvesting proteins of eukaryotic algae. In: Frank HA, Young AJ, Britton G and Cogdell RJ (eds) Photochemistry of Carotenoids, pp 81–98. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hobe S, Prytulla S, Kühlbrandt W and Paulsen H (1994) Trimerization and crystallization of reconstituted light-harvesting chlorophyll a/b complex. EMBO J 13: 3423–3429

    CAS  PubMed  Google Scholar 

  • Hobe S, Förster R, Klinger J and Paulsen H (1995) N-proximal sequence motif in light-harvesting chlorophyll a/b-binding protein is essential for the trimerization of light-harvesting chlorophyll a/b complex. Biochemistry 34: 10224–10228

    Article  CAS  PubMed  Google Scholar 

  • Hobe S, Niemeier H, Bender A and Paulsen H (2000) Carotenoid binding sites in LHCIIb—Relative affinities towards major xanthophylls of higher plants. Eur J Biochem 267: 616–624

    Article  CAS  PubMed  Google Scholar 

  • Hofmann E, Wrench PM, Sharpies FP, Hiller RG, Welte W and Diederichs K (1996) Structural basis of light harvesting by carotenoids: Peridinin-chlorophyll-protein from Amphidinium carterae. Science 272: 1788–1791

    CAS  PubMed  Google Scholar 

  • Holt NE, Fleming GR and Niyogi KK (2004) Toward an understanding of the mechanism of nonphotochemical quenching in green plants. Biochemistry 43: 8281–8289

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Miyashita H, Miyashita H, Iwasaki I, Kurano N, Miyachi S, Iwaki M and Itoh S (1998) A Photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Natl Acad Sci USA 95: 13319–13323

    CAS  PubMed  Google Scholar 

  • Hu Q, Marquardt J, Iwasaki I, Miyashita H, Kurano N, Mörschel E and Miyachi S (1999) Molecular structure, localization and function of biliproteins in the chlorophyll a/d containing oxygenic photosynthetic prokaryote Acaryochloris marina. Biochim Biophys Acta 1412: 250–261

    CAS  PubMed  Google Scholar 

  • Hutin C, Nussaume L, Moise N, Moya I, Kloppstech K and Havaux M (2003) Early light-induced proteins protect Arabidopsis from photooxidative stress. Proc Natl Acad Sci USA 100: 4921–4926

    Article  CAS  PubMed  Google Scholar 

  • Ilagan RP, Shima S, Melkozernov A, Lin S, Blankenship RE, Sharpies FP, Hiller RG, Birge RR and Frank HA (2004) Spectroscopic properties of the main-form and high-salt peridinin-chlorophyll a proteins from Amphidinium carterae. Biochemistry 43: 1478–1487

    Article  CAS  PubMed  Google Scholar 

  • Ivanov AG, Park Y-I, Miskiewicz E, Raven JA, Huner NPA and Öquist G (2000) Iron stress restricts photosynthetic intersystem electron transport in Synechococcus sp. PCC 7942. FEBS Lett 485: 173–177

    Article  CAS  PubMed  Google Scholar 

  • Jakob T, Goss R and Wilhelm C (1999) Activation of diadinoxanthin de-epoxidase due to a chlororespiratory proton gradient in the dark in the diatom Phaeodactylum tricornutum. Plant Biology 1: 76–82

    CAS  Google Scholar 

  • Jansson S (1999) A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci 4: 236–240

    Article  PubMed  Google Scholar 

  • Joshua S and Mullineaux CW (2005) Phycobilisome diffusion is required for light-state transitions in cyanobacteria. Plant Physiology 135: 2112–2119

    Google Scholar 

  • Kamiya N and Shen J-R (2003) Crystal structure of oxygen-evolving Photosystem II from Thermosynechococcus vulcanus at 3.7Ã… resolution. Proc Natl Acad Sci USA 100: 98–103

    Article  CAS  PubMed  Google Scholar 

  • Kleima FJ, Hobe S, Calkoen F, Urbanus ML, Peterman EJG, van Grondelle R, Paulsen H and van Amerongen H (1999) Decreasing the chlorophyll a/b ratio in reconstituted LHCII: Structural and functional consequences. Biochemistry 38: 6587–6596

    Article  CAS  PubMed  Google Scholar 

  • Krause GH and Jahns P (2003) Pulse amplitude modulated chlorophyll fluorometry and is application in plant science. In: Green BR and Parson WW (eds) Light-Harvesting Antennas in Photosynthesis, pp 353–372. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621

    Article  PubMed  Google Scholar 

  • Larkum WD, Douglas SE and Raven JA (eds) (2003) Photosyn-thesis in Algae. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • LaRoche J, van der Staay GWM, Partensky F, Ducret A, Aebersold R, Li R, Golden SS, Hiller RG, Wrench PM Larkum AWD and Green BR (1996) Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins. Proc Natl Acad Sci US 93: 15244–14248

    CAS  Google Scholar 

  • Lavaud J, Rousseau B, van Gorkom HJ and Etienne A-L (2002a) Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Plant Physiol 129: 1398–1406

    Article  CAS  PubMed  Google Scholar 

  • Lavaud J, van Gorkom HJ and Etienne A-L (2002b) Photosystem II electron transfer cycle and chlororespiration in planktonic diatoms. Photosynth Res 74: 51–59

    Article  CAS  PubMed  Google Scholar 

  • Lavaud J, Rousseau B and Etienne A-L (2004) General features of photoprotection by energy dissipation in planktonic diatoms (Bacillariophyceae). J Phycol 40: 130–137

    Google Scholar 

  • Li XP, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S and Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403: 391–395

    CAS  PubMed  Google Scholar 

  • Li XP, Müller-Moulé P, Gilmore AM and Niyogi KK (2002) PsbS-dependent enhancement of feedback de-excitation protects Photosystem II from photoinhibition. Proc Natl Acad Sci USA 99: 15222–15227

    CAS  PubMed  Google Scholar 

  • Li XP, Gilmore AM, Caffarri S, Bassi R, Golan T, Kramer D and Niyogi KK (2004) Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J Biol Chem 279: 22866–22874

    CAS  PubMed  Google Scholar 

  • Lichtlé C, Duval JC and Lemoine Y (1987) Comparative biochemical, functional and ultrastructural studies of photosystem particles from a Cryptophycea: Cryptomonas rufescence; isolation of an active phycoerythrin particle. Biochim Biophys Acta 894: 76–90

    Google Scholar 

  • Lichtlé C, McKay RML and Gibbs SP (1992a) Immunogold localization of Photosystem I and Photosystem II light-harvesting complexes in cryptomonad chloroplasts. Biol Cell 74: 187–194

    Google Scholar 

  • Lichtlé C, Spilar A and Duval JC (1992b) Immunogold localization of light-harvesting and Photosystem I complexes in the thylakoids of Fucus serratus (Phaeophyceae). Protoplasma 166: 99–106

    Article  Google Scholar 

  • Liu ZF, Yan HC, Wang KB, Kuang TY, Zhang JP, Gul LL, An XM and Chang WR (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Ã… resolution. Nature 428: 287–292

    Article  CAS  PubMed  Google Scholar 

  • Lohr M and Wilhelm C (1999) Algae displaying the diadinoxanthn cycle also possess the violaxanthin cycle. Proc Natl Acad Sci USA 96: 8784–8789

    Article  CAS  PubMed  Google Scholar 

  • Ludwig M and Gibbs SP (1989) Localization of phycoerythrin at the lumenal surface of the thylakoid membrane in Rhodomonas lens. J Cell Biol 108: 875–884

    Article  CAS  PubMed  Google Scholar 

  • Ma YZ, Holt NE, Li XP, Niyogi KK and Fleming GR (2003) Evidence for direct carotenoid involvement in the regulation of photosynthetic light harvesting. Proc Natl Acad Sci USA 100: 4377–4382

    CAS  PubMed  Google Scholar 

  • MacColl R and Guard-Friar D (1987) Phycobiliproteins. CRC Press, Boca Raton

    Google Scholar 

  • Macpherson AN and Hiller RG (2003) Light-harvesting systems in chlorophyll c-containing algae. In: Green BR and Parson WW (eds) Light-Harvesting Antennas in Photosynthesis, pp. 323–352. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Matthijs HCP, van der Staay GWM and Mur LR (1995) Prochlorophytes: The ‘other’ cyanobacteria? In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 49–64. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • McConnell MD, McConnell RK, Sergej V and Bruce D (2002) Regulation of the distribution of chlorophyll and phycobilins-absorbed excitation energy in cyanobacteria. A structure-based model for the light state transition. Plant Physiol. 130: 1202–1212

    Article  Google Scholar 

  • McFadden GI (1999) Endosymbiosis and evolution of the plant cell. Curr Opinion Plant Biol 2: 513–519

    Article  CAS  Google Scholar 

  • McFadden GI (2001) Primary and secondary endosymbiosis and the origin of plastids. J Phycol 37: 951–959

    Article  Google Scholar 

  • Meyer M and Wilhelm C (1993) Reconstitution of light-harvesting complexes from Chlorella fusca (Chlorophyceae) and Mantoniella squamata (Prasinophyceae). Z Naturforsch 48c: 461–473

    Google Scholar 

  • Miao JH, Irrgang KD, Salnikow J, Franke P and Vater J (1998) Close vicinity of Lhcbl and Lhcb4 in Photosystem II—Membrane fragments as verified by chemical cross-linking. Eur J Biochem 257: 586–591

    Article  CAS  PubMed  Google Scholar 

  • Mimuro M and Kikuchi H (2003) Antenna systems and energy transfer in cyanophyta and rhodophyta. In: Green BR and Parson WW (eds) Light-Harvesting Antennas in Photosynthesis, pp 281–306. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Minagawa J and Takahashi Y (2004) Structure, function and assembly of Photosystem II and its light-harvesting proteins. Photosynth Res 82: 241–263

    Article  CAS  PubMed  Google Scholar 

  • Montane MH and Kloppstech K (2000) The family of light-harvesting-related proteins (LHCs, ELIPs, HLIPs): Was the harvesting of light their primary function? Gene 258: 1–8

    CAS  PubMed  Google Scholar 

  • Morosinotto T, Caffarri S, Dall’Osto L and Bassi R (2003) Mechanistic aspects of the xanthophyll dynamics in higher plant thylakoids. Physiol Plant 119: 347–354

    Article  CAS  Google Scholar 

  • Murakami A, Miyashita H, Iseki M, Adachi K and Mimuro M (2004) Chlorophyll d in an epiphytic cyanobacterium of red algae. Science 303: 1633

    Article  CAS  PubMed  Google Scholar 

  • Nield J, Funk C and Barber J (2000a) Supermolecular structure of Photosystem II and location of the PsbS protein. Phil Trans Roy Soc Lond B 355: 1337–1344

    CAS  Google Scholar 

  • Nield J, Orlova EV, Morris EP, Gowen B, van Heel M and Barber J (2000b) 3D map of the plant Photosystem II supercomplex obtained by cryoelectron microscopy and single particle analysis. Nat Struct Biol 7: 44–47

    CAS  PubMed  Google Scholar 

  • Novoderezhkin VI, Palacios MA, van Amerongen H and van Grondelle R (2004) Energy-transfer dynamics in the LHCII complex of higher plants: Modified redfield approach. J Phys Chem B 108: 10363–10375

    CAS  Google Scholar 

  • Nussberger S, Dorr K, Wang DN, Kühlbrandt W (1993) Lipid-protein interactions in crystals of plant light-harvesting complex. J Mol Biol 234: 347–356

    CAS  PubMed  Google Scholar 

  • Nussberger S, Dekker JP, Kühlbrandt W, van Bolhuis BM, van Grondelle R and van Amerongen H (1994) Spectroscopic characterization of three different monomeric forms of the main chlorophyll a/b binding protein from chloroplast membranes. Biochemistry 33: 14775–14783

    Article  CAS  PubMed  Google Scholar 

  • Olszowka D, Krawczyk S and Maksymiec W (2004) A study of molecular interactions in light-harvesting complexes LHCIIb, CP29, CP26 and CP24 by Stark effect spectroscopy. Biochim Biophys Acta 1657: 61–70

    CAS  PubMed  Google Scholar 

  • Pagano A, Cinque G and Bassi R (1998) In vitro reconstitution of the recombinant Photosystem II light-harvesting complex CP24 and its spectroscopic characterization. J Biol Chem 273: 17154–17165

    Article  CAS  PubMed  Google Scholar 

  • Palacios MA, Frese RN, Gradinaru CC, van Stokkum IHM, Premvardhan LL, Horton P, Ruban AV, van Grondelle R and van Amerongen H (2003) Stark spectroscopy of the light-harvesting complex II indifferent oligomerisation states. Biochim Biophys Acta 1605: 83–95

    CAS  PubMed  Google Scholar 

  • Parson WW and Nagarajan V (2003) Optical spectroscopy in photosynthetic antennas. In: Green BR and Parson WW (eds) Light-Harvesting Antennas in Photosynthesis, pp 84–127. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Partensky F and Garczarek L (2003) The photosynthetic apparatus of green oxyphotobacteria. In: Larkum WD, Douglas SE and Raven JA (eds) Photosynthesis in Algae, pp 29–62. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Park Y-I, Sandström S, Gustafsson P and Öquist G (1999) Expression of the isiA gene is essential for the survival of the cyanobacterium Synechococcus. sp. PCC7942 by protecting Photosystem II from excess light under iron limitation. Mol Microbiol 32: 123–129

    Article  CAS  PubMed  Google Scholar 

  • Pascal AA, Caron L, Rousseau B, Lapouge K, Duval JC and Robert B (1998) Resonance Raman spectroscopy of a light-harvesting proteins from the brown alga Laminaria saccharina. Biochemistry 37: 2450–2457

    Article  CAS  PubMed  Google Scholar 

  • Pascal A, Gastaldella M, Ceoldo S, Bassi R, Robert B (2001) Pigment conformation and pigment-protein interactions in the reconstituted Lhcb4 antenna protein. FEBS Lett 492: 54–57

    Article  CAS  PubMed  Google Scholar 

  • Paulsen H (1997) Pigment ligation to proteins of the photosynthetic apparatus in higher plants. Physiol Plant 100: 760–768

    Article  CAS  Google Scholar 

  • Peterman EJG, Gradinaru CC, Calkoen F, Borst JC, van Grondelle R and van Amerongen H (1997) Xanthophylls in light-harvesting complex II of higher plants: Light harvesting and triplet quenching. Biochemistry 36: 12208–12215

    Article  CAS  PubMed  Google Scholar 

  • Post AF, Ohad I, Warner KM and Bullerjahn GS (1993) Energy distribution between photosystems I and II in the photosynthetic prokaryote Prochlorothrix hollandica involves a chlorophyll a/b antenna which associates with Photosystem I. Biochim Biophys Acta 1144: 374–384

    CAS  Google Scholar 

  • Pyszniak AM and Gibbs SP (1992) Immunochemical localization of Photosystem I and the fucoxanthin-chlorophyll a/c light-harvesting complex in the diatom, Phaeodactylum tricornutum. Protoplasma 189: 208–217

    Google Scholar 

  • Remelli R, Varotto C, Sandonà D, Croce R and Bassi R (1999) Chlorophyll binding to monomeric light-harvesting complex. A mutation analysis of chromophore-binding residues. J Biol Chem 274: 33510–33521

    Article  CAS  PubMed  Google Scholar 

  • Reuter W, Wiegand G, Huber R and Than M (1999) Structural analysis and 2.2Ã… of orthorhombic crystals presents the asymmetry of the allophycocyanin-linker complex, AP.LC7.8, from the phycobilisomes of Mastigocladus laminosus. Proc Natl Acad Sci USA 96: 1364–1368

    Article  Google Scholar 

  • Richaud C, Zabulon G, Joder A and Thomas J-C (2001) Nitrogen or sulfur starvation differentially affects phycobilisome degradation and expression of the nblA gene in Synechocystis strain PCC 6803. J Bacteriol 183: 2989–2994

    Article  CAS  PubMed  Google Scholar 

  • Rogl H and Kühlbrandt W (1999) Mutant trimers of light-harvesting complex II exhibit altered pigment content and spectroscopic features. Biochemistry 38: 16214–16222

    Article  CAS  PubMed  Google Scholar 

  • Rogl H, Schödel R, Lokstein H, Kühlbrandt W and Schubert A (2002) Assignment of spectral substructures to pigment-binding sites in higher plant light-harvesting complex LHC-II. Biochemistry 41: 2281–2287

    Article  CAS  PubMed  Google Scholar 

  • Rogl H, Kühlbrandt W and Barth A (2003) Light-induced changes in the chemical bond structure of light-harvesting complex II probed by FTIR spectroscopy. Biochemistry 42: 10223–10228

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Wentworth M, Yakushevska AE, Andersson J, Lee PJ, Keegstra W, Dekker JP, Boekema EJ, Jansson S and Horton P (2003) Plants lacking the main light-harvesting complex retain Photosystem II macro-organization. Nature 421: 648–652

    Article  CAS  PubMed  Google Scholar 

  • Sandström S, Park Y-I, Öquist G and Gustafsson P (2001) CP43’, the isiA gene product, functions as an excitation energy dissipater in the cyanobacterium Synechococcus sp. PCC 7942. Photochem Photobiol 74: 431–437

    Article  PubMed  Google Scholar 

  • Sandström S Ivanov AG, Park Y-I, Öquist G and Gustafsson P (2002) Iron stress responses in the cyanobacterium Synechococcus sp. PCC7942. Physiol Plant 116: 255–263

    PubMed  Google Scholar 

  • Sarcina M, Tobin MJ and Mullineaux CW (2001) Diffusion of phycobilisomes on the thylakoid membranes of the cyanobacterium Synechococcus 7942. Effects of phycobilisome size, temperature, and membrane lipid composition. J Biol Chem 276: 46830–46834

    Article  CAS  PubMed  Google Scholar 

  • Scheer H (2003) The pigments. In: Green BR and Parson WW (eds) Light-Harvesting Antennas in Photosynthesis, pp 29–81. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Sharpies FP, Wrench PM, Ou K and Hiller RG (1996) Two distinct forms of the peridinin-chlorophyll a-protein from Amphidinium carterae. Biochim Biophys Acta 1276: 117–123

    Google Scholar 

  • Shima S, Ilagan RP, Gillespie N, Sommer BJ, Hiller RG, Sharpies FP, Frank HA and Birge RR (2003) Two-photon and fluorescence spectroscopy and the effect of environment on the photochemical properties of peridinin in solution and in the peridinin-chlorophyll-protein from Amphidinium carterae. J Phys Chem A 107: 8052–8066

    Article  CAS  Google Scholar 

  • Simonetto R, Crimi M, Sandonà D, Croce R, Cinque G, Breton J and Bassi R (1999) Orientation of chlorophyll transition moments in the higher-plant light-harvesting complex CP29. Biochemistry 38: 12974–12983

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, McIntyre LM and Sherman LA (2003) Microarray analysis of the genome-wide response to iron deficiency and iron reconstitution in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 132: 1825–1839

    Article  CAS  PubMed  Google Scholar 

  • Stauber EJ, Fink A, Markert C, Kruse O, Johanningmeier U and Hippler M (2003) Proteomics of Chlamydomonas reinhardtii light-harvesting proteins. Euk Cell 2: 978–994

    CAS  Google Scholar 

  • Teramoto H, Ono T and Minagawa J (2001) Identification of Lhcb gene family encoding the light-harvesting chlorophyll-a/b proteins of Photosystem II in Chlamydomonas reinhardtii. Plant Cell Physiol 42: 849–856

    Article  CAS  PubMed  Google Scholar 

  • Ting CS and Owens TG (1993) Photochemical and nonphotochemical fluorescence quenching processes in the diatom Phaeodactylum tricornutum. Plant Physiol 101: 1323–1330

    CAS  PubMed  Google Scholar 

  • Ting CS and Owens TG (1994) The effects of excess irradiance on photosynthesis in the marine diatom Phaeodactylum tricornutum. Plant Physiol 106: 763–770

    CAS  PubMed  Google Scholar 

  • Ting CS, Rocap G, King J and Chisholm SW (2001) Phycobiliprotein genes of the marine photosynthetic prokaryote Prochlorococcus: Evidence for rapid evolution of genetic heterogeneity. Microbiology 147: 3171–3182

    CAS  PubMed  Google Scholar 

  • Ting CS, Rocap G, King J and Chisholm SW (2002) Cyanobacterial photosynthesis in the oceans: The origins and significance of divergent light-harvesting strategies. Trends Microbiol 10: 134–142

    Article  CAS  PubMed  Google Scholar 

  • Toole CA and Allnutt FCT (2003) Red, cryptomonad and glaucocystophyte algal phycobiliproteins. In: Larkum WD, Douglas SE and Raven JA (eds) Photosynthesis in Algae, pp 305–334. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • van Amerongen H and Dekker JP (2003) Light-harvesting in Photosystem II. In: Green BR and Parson WW (eds) Light-Harvesting Antennas in Photosynthesis, pp 219–251. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • van der Staay GWM, Brouwer A, Baard RL, van Mourik F and Matthijs HCP (1992) Separation of photosystems I and II from the oxychlorobacterium (prochlorophyte) Prochlorothrix hollandica and association of Chl b binding antennae with PS II. Biochim Biophys Acta 975: 317–324

    Google Scholar 

  • van der Staay GWM, Yurkova N and Green BR (1998) The 38 kDa chlorophyll a/b protein of the prokaryote Prochlorothrix hollandica is encoded by a divergent pcb gene. Plant Mol Biol 36: 709–716

    PubMed  Google Scholar 

  • Wang H-L, Postier BL, and Burnap RL (2004) Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J Biol Chem, 279: 5739–5751

    CAS  PubMed  Google Scholar 

  • Wedemayer G, Kidd D and Glazer AN (1996) Cryptopomonad biliproteins: Bilin types and location. Photosynth Res 48: 163–170

    Article  CAS  Google Scholar 

  • Wilk KE, Harrop SJ, Jankova L, Edler D, Keenan G, Sharpies F, Hiller RG and Curmi PMG (1999) Evolution of a light-harvesting protein by addition of new subunits and rearrangement of conserved elements: Crystal structure of a cryptophyte phycoerythrin at 1.63Ã… resolution. Proc Natl Acad Sci USA 96: 8901–8906

    Article  CAS  PubMed  Google Scholar 

  • Yakushevska AE, Keegstra W, Boekema EJ, Dekker JP, Andersson J, Jansson S, Ruban AV and Horton P (2003) The structure of Photosystem II in Arabidopsis: Localization of the CP26 and CP29 antenna complexes. Biochemistry 42: 604–613

    Article  Google Scholar 

  • Yang C, Kosemund K, Cornet C and Paulsen H (1999) Exchange of pigment-binding amino acids in light-harvesting chlorophyll a/b protein. Biochemistry 38: 16205–16213

    CAS  PubMed  Google Scholar 

  • Yeremenko N, KouÅ™il R, Ihalainen JA, D’Haene S, van Oosterwijk N, Andrizhiyevskaya EG, Keegstra W, Dekker HL, Hagemann M, Boekema EJ, Matthijs HCP and Dekker JP (2004) Supramolecular organization and dual function of the IsiA chlorophyll-binding protein in cyanobacteria. Biochemistry 43: 10308–10313

    Article  CAS  PubMed  Google Scholar 

  • Zouni A, Will H-T, Kern J, Fromme P, Krauss N, Saenger W and Orth P (2001) Crystal structure of Photosystem II from Synechococcus elongatus at 3.8 Ã… resolution. Nature 409: 739–743

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Green, B.R., Gantt, E. (2005). Distal and Extrinsic Photosystem II Antennas. In: Wydrzynski, T.J., Satoh, K., Freeman, J.A. (eds) Photosystem II. Advances in Photosynthesis and Respiration, vol 22. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4254-X_3

Download citation

Publish with us

Policies and ethics