Skip to main content

Photoinactivation and Mechanisms of Recovery

  • Chapter
Photosystem II

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 22))

Summary

Photoinactivation of Photosystem II (PS II) is unavoidable in oxygenic photosynthesis, but the photodamage is counteracted by an elaborate repair process without which the photosynthetic apparatus would soon perish. Photoinactivation of PS II depends on the light dosage; the quantum yield of photoinactivation is such that practically the entire population of PS II would be photoinactivated during the course of a sunny day if repair were inhibited. An agent predominantly and inadvertently responsible for the photoinactivation of PS II is likely to be P680+, the strongest oxidant in photosynthesis needed for the oxidation of water molecules. Amelioration of photoinactivation of PS II occurs via many strategies, including one mechanism that appears to sustain activity in a small population of PS II during prolonged high-light stress. The majority of PS II complexes, however, have to be repaired following their photoinactivation. The repair process, culminating in the biosynthesis and insertion of a new copy of the D1 protein in a re-assembled PS II reaction center, consists of many steps. These include: (1) ‘triggering’ of the D1 protein, leading to monomerization and partial disassembly of the PS II dimer complex in granal appressed membranes in higher-plant chloroplasts; (2) migration of the PS II core monomer to stroma-exposed thylakoids; (3) D1 proteolysis catalyzed, for example, first by the proteases DegP2 followed by FtsHl, or directly by FtsH2; (4) targeting of the ribosome/nascent D1 chain complex to the thylakoid membrane; (5) translation elongation of D1 and insertion of new D1 into a D1-depleted PS II; (6) ligation of cofactors in the PS II reaction center; (7) termination of translation and carboxyl-terminal processing of D1; (8) post-translational assembly of PS II monomers; and (9) migration of re-assembled PS II monomers to granal membranes, where functional PS II dimers are formed. In this way, the functionality of PS II is maintained despite the inevitability of photoinactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam Z and Clarke AK (2002) Cutting edge of chloroplast proteolysis. Trends Plant Sci 7: 451–456

    Article  CAS  PubMed  Google Scholar 

  • Adam Z, Adamska I, Nakabayashi K, Ostersetzer O, Haussuhl K, Manuell A, Zheng B, Vallon O, Rodermel SR, Shinozaki K and Clarke AK (2001) Chloroplast and mitochondrial proteases in Arabidopsis. A proposed nomenclature. Plant Physiol 125: 1912–1918

    Article  CAS  PubMed  Google Scholar 

  • Adir N, Shochat S and Ohad I (1990) Light-dependent D1 protein synthesis and translocation is regulated by reaction center II. Reaction center II serves as an acceptor for the D1 precursor. J Biol Chem 265: 12563–12568

    CAS  PubMed  Google Scholar 

  • Adir N, Zer H, Shouchat S and Ohad I (2003) Photoinhibition — a historical perspective. Photosynth Res 73: 343–340

    Google Scholar 

  • Amin P, Sy DA, Pilgrim ML, Parry DH, Nussaume L and Hoffman NE (1999) Arabidopsis mutants lacking the 43-and 54-kilodalton subunits of the chloroplast signal recognition particle have distinct phenotypes. Plant Physiol 121: 61–70

    Article  CAS  PubMed  Google Scholar 

  • Anbudurai PR, Mor TS, Ohad I, Shestakov SV and Pakrasi HB (1994) The ctpA gene encodes the C-terminal processing protease for the D1 protein of the Photosystem II reaction center complex. Proc Natl Acad Sci USA 91: 8082–8086

    CAS  PubMed  Google Scholar 

  • Anderson JM (2001) Does functional Photosystem II complex have an oxygen channel? FEBS Lett 488: 1–4

    Article  CAS  PubMed  Google Scholar 

  • Anderson JM and Aro E-M (1994) Grana stacking and protection of Photo system II in thylakoid membranes of higher plant leaves under sustained high irradiance: An hypothesis. Photosynth Res 41: 315–326

    Article  CAS  Google Scholar 

  • Anderson JM and Chow WS (2002) Functional/structural dynamics of plant Photosystem II. Phil Trans Roy Soc London B, 357: 1441–1450

    PubMed  Google Scholar 

  • Anderson JM, Park Y-I and Chow WS (1997) Photoinactivation and photoprotection of Photosystem II in nature. Physiol Plant 100: 214–223

    Article  CAS  Google Scholar 

  • Anderson JM, Park YI and Chow WS (1998) Unifying model for the photoinactivation of Photosystem II in vivo under steady-state photosynthesis. Photosynth Res 56: 1–13

    Article  CAS  Google Scholar 

  • Andersson B and Aro E-M (2001) Photodamage and D1 protein turnover in Photosystem II. In: Aro E-M and Andersson B (eds) Regulation of Photosynthesis, pp 377–394. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Andersson B and Barber J (1996) Mechanisms of photodamage and protein degradation during photoinhibition of Photosystem II. In: Baker NR (ed) Photosynthesis and the Environment, pp 101–121. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Aro EM, Hundal T, Carlberg I and Andersson B (1990) In vitro studies on light-induced inhibition of Photosystem II and D1-protein degradation at low temperatures. Biochim Biophys Acta 1019: 269–275

    CAS  Google Scholar 

  • Aro EM, Virgin I and Andersson B (1993) Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143: 113–134

    CAS  PubMed  Google Scholar 

  • Aro EM, McCaffery S and Anderson JM (1994) Recovery from photoinhibition in peas (Pisum sativum L.) acclimated to varying growth conditions. Plant Physiol 104: 1033–1041

    CAS  PubMed  Google Scholar 

  • Aro EM, Suorsa M, Rokka A, Allahverdiyeva Y, Paakkarinen V, Saleem A, Battchikova N and Rintamäki E. (2005) Dynamics of Photosystem II — a proteomic approach to thylakoid protein complexes. J Exp Bot 56: 347–356

    CAS  PubMed  Google Scholar 

  • Asada K (1996) Radical production and scavenging in the chloroplasts. In: Baker NR (ed) Photosynthesis and the Environment, pp 123–150. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50: 601–639

    Article  CAS  PubMed  Google Scholar 

  • Baena-Gonzalez E, Barbato R and Aro EM (1999) Role of PSII phosphorylation in the PSII repair cycle and oligomeric structure. Planta 208: 196–204

    CAS  Google Scholar 

  • Bailey S, Silva P, Nixon P, Mullineux CW, Robinson C and Mann N (2001) Auxiliary functions in photosynthesis: The role of the FtsH protease. Biochem Soc Trans 29: 455–459

    Article  CAS  PubMed  Google Scholar 

  • Bailey S, Thompson E, Nixon P, Horton P, Mullineux CW, Robinson C and Mann NH (2002) A critical role for the Var2 FtsH homologue of Arabidopsis thaliana in the Photosystem II repair cycle in vivo. J Biol Chem 277: 2066–2011

    Google Scholar 

  • Barbato R, Shipton CA, Giacometti, GM and Barber J (1991) New evidence suggests that the initial photoinduced cleavage of the D1 protein may not occur near the PEST sequence. FEBS Lett 290: 162–166

    Article  CAS  PubMed  Google Scholar 

  • Barber J (1995) Molecular basis of the vulnerability of Photosystem II to damage by light. Aust J Plant Physiol 22: 201–208

    CAS  Google Scholar 

  • Barber J (1998) Photosystem two. Biochim Biophys Acta 1365: 269–277

    CAS  PubMed  Google Scholar 

  • Baroli I and Melis A (1996) Photoinhibition and repair in Dunaliella salina acclimated to different growth irradiance. Planta 198: 640–646

    Article  CAS  Google Scholar 

  • Bilger W and Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25: 173–185

    CAS  Google Scholar 

  • Blubaugh DJ and Cheniae GM (1990) Kinetics of photoinhibition in hydroxylamine-extracted Photosystem II: Relevance to photoinactivation and sites of electron donation. Biochemistry 29: 5109–5118

    Article  CAS  PubMed  Google Scholar 

  • Bowyer JR, Packer JCL, McCormack BA, Whitelegge JP, Robinson C and Taylor M (1992) Carboxyl-terminal processing of the D1 protein and photoactivation of water splitting in Photosystem II. J Biol Chem 267: 5424–5433

    CAS  PubMed  Google Scholar 

  • Chiba S, Akiyama Y and Ito K (2002) Membrane protein degradation by FtsH can be initiated from either end. J Bacteriol 184: 4775–4782

    CAS  PubMed  Google Scholar 

  • Chow WS (1994) Photoprotection and photoinhibitory damage. Adv Mol Cell Biol 10: 151–196

    CAS  Google Scholar 

  • Chow WS (2001) The photoinactivation of Photosystem II in leaves: A personal perspective. J Photoscience 8: 43–53

    CAS  Google Scholar 

  • Chow WS, Qian L, Goodchild DJ and Anderson JM (1988) Photosynthetic acclimation of Alocasia macrorrhiza (L.) G. Don to growth irradiance: Structure, function and composition of chloroplasts. Aust J Plant Physiol 15: 107–122

    CAS  Google Scholar 

  • Chow WS, Lee H-Y, Park Y-I, Park Y-M, Hong Y-N and Anderson JM (2002) The role of inactive photosystem-II-mediated quenching in a last-ditch community defence against high light stress in vivo. Phil Trans R Soc Lond B 357: 1441–1450

    Article  CAS  Google Scholar 

  • Cleland RE, Melis A and Neale JP (1986) Mechanism of photoinhibition: Photochemical reaction center inactivation in system II of chloroplasts. Photosynth Res 9: 79–88

    Article  CAS  Google Scholar 

  • Cooper KW and Baneyx F (2001) Escherichia coli FtsH (HflB) degrades a membrane-associated TolAl-II-β-lactamase fusion protein under highly denaturating conditions. Protein Express Purif 21: 323–332

    CAS  Google Scholar 

  • Curtis SE and Haselkorn R (1984) Isolation, sequence and expression of the two members of the 32 kd thylakoid membrane protein gene family from the cyanobacterium Anabaena 7120. Plant Mol Biol 3: 249–258

    Article  CAS  Google Scholar 

  • De Las Rivas J, Shipton CA, Ponticos M and Barber J (1992) Acceptor side mechanism of photo-induced proteolysis of the D1 protein in Photosystem II reaction centers. Biochemistry 32: 6944–6950

    Google Scholar 

  • Demmig B, Winter K, Krüger A and Czygan F-C (1987) Photoinhibition and zeaxanthin formation in intact leaves. Plant Physiol 84: 218–224

    CAS  Google Scholar 

  • Diner BA, Ries DF, Cohen BN and Metz JG (1988) COOH-terminal processing of polypeptide D1 of the Photosystem II reaction center of Scenedesmus obliquus is necessary for the assembly of oxygen evolving complex. J Biol Chem 263: 8972–8980

    CAS  PubMed  Google Scholar 

  • Eckert H-J, Geiken B, Bernading, Napiwotzki A, Eichler H-J and Renger G (1991) Two sites of photoinhibition of the electron transfer in oxygen evolving and Tris-treated PS II membrane fragments from spinach. Photosynth Res 27: 97–108

    Article  CAS  Google Scholar 

  • Edhofer I, Mühlbauer SK and Eichacker LA (1998) Light regulates the rate of translation elongation of chloroplast reaction center protein D1. Eur J Biochem 257: 78–84

    Article  CAS  PubMed  Google Scholar 

  • Englman R and Jortner J (1970) The energy gap law for radiationless transition in large molecules. Mol Phys 18: 145–164

    CAS  Google Scholar 

  • Ewart AJ (1896) On assimilatory inhibition in plants. J Linn Soc 31: 364–461

    Google Scholar 

  • Giersch C and Krasue GH (1991) A simple model relating photoinhibitory fluorescence quenching in chloroplasts to a population of altered Photosystem II reaction centers. Photosynth Res 30: 115–121

    Article  CAS  Google Scholar 

  • Gilmore AM (1997) Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant 99: 197–209

    Article  CAS  Google Scholar 

  • Gilmore A and Govindjee (1999) How higher plants respond to excess light: Energy dissipation in Photosystem II. In: Singhar AS, Renger A, Hrrang K-D, Sopory S and Govindjee (eds) Concepts in Photobiology: Photosynthesis and Photomorphogenesis, pp 513–548. Narosa Publishers, New Dehli/Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gilmore AM and Yamamoto HY (1991) Zeaxanthin formation and energy-dependent fluorescence quenching in pea chloroplasts under artificially mediated linear and cyclic electron transport. Plant Physiol 96: 635–643

    CAS  Google Scholar 

  • Golden SS, Brusslan J and Haselkorn R (1986) Expression of a family of psbA genes encoding a Photosystem II polypeptide in the cyanobacterium Anacystis nidulans R2. EMBO J 5: 2789–2798

    CAS  PubMed  Google Scholar 

  • Greer DH, Berry JA and Björkman O (1986) Photoinhibition of photosynthesis in intact bean leaves: Role of light and temperatore, and requirement for chloroplast-protein synthesis during recovery. Planta 168: 253–260

    CAS  Google Scholar 

  • Hager M, Herrmann M, Biehler K, Krieger-Liszkay A and Bock R (2002) Lack of the small plastid-encoded PsbJ polypeptide results in a defective water-splitting apparatus of Photosystem II, reduced Photosystem I levels and hypersensitivity to light. J Biol Chem 277: 14031–14039

    CAS  PubMed  Google Scholar 

  • Hankamer B, Boekema EJ and Barber J (1997) Structure and membrane organization of Photosystem II in green plants. Annu Rev Plant Physiol Plant Mol Biol 48: 641–671

    Article  CAS  PubMed  Google Scholar 

  • Haussühl K, Andersson B and Adamska I (2001) A chloroplast DegP2 protease performs the primary cleavage of the photodamaged D1 protein in plant Photosystem II. EMBO J 20: 1–10

    Google Scholar 

  • He J and Chow WS (2003) The rate coefficient or repair of photosystem II after photoinactivation. Physiol Plant 118: 297–304

    Article  CAS  Google Scholar 

  • Hendrickson L, Förster B, Furbank RT and Chow WS (2004) Processes contributing to photoprotection of grapevine leaves illuminated at low temperature. Physiol Plant 121: 272–281

    Article  CAS  PubMed  Google Scholar 

  • Herranen M, Aro EM and Tyystjärvi T (2001) Two distinct mechanisms regulate the transcription of Photosystem II genes in Synechocystis sp. PCC 6803. Physiol Plant 112: 531–539

    Article  CAS  PubMed  Google Scholar 

  • Hideg E, Kálai T, Hideg K and Vass I (1998) Photoinhibition of photosynthesis in vivo results in singlet oxygen production. Detection via nitroxide-induced fluorescence quenching in broad bean leaves. Biochemistry 37: 11405–11411

    Article  CAS  PubMed  Google Scholar 

  • Hihara Y, Kamei A, Kanehisa M, Kaplan A and Ikeuchi M (2001) DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13: 793–806

    Article  CAS  PubMed  Google Scholar 

  • Horton P (1999) Are grana necessary for regulating of light harvesting? Aust J Plant Physiol 26: 659–669

    CAS  Google Scholar 

  • Horton P, Ruban AV and Walter RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47: 655–684

    Article  CAS  PubMed  Google Scholar 

  • Itzhaki H, Naveh L, Lindahl M, Cook M and Adam Z (1998) Identification and characterization of DegP, a serine protease associated with the lumenal side of the thylakoid membrane. J Biol Chem 273: 7094–7098

    Article  CAS  PubMed  Google Scholar 

  • Ivanov AG, Sane PV, Zeinalov Y, Simidjiev I, Huner NPA and Öquist G (2002) Seasonal responses of photosynthetic electron transport in Scots pine (Pinus sylvestris L.) studied by thermoluminescence. Planta 215: 457–465

    CAS  PubMed  Google Scholar 

  • Jansen MAK, Depka B, Trebst A and Edelman, M (1993) Engagement of specific sites in plastoquinone niche regulates degradation of D1 protein in Photosystem II. J Biol Chem 268: 21246–21252

    CAS  PubMed  Google Scholar 

  • Jansson C, Debus RJ, Osiewacz HD, Gurevitz M and McIntosh L (1987) Construction of an obligate photoheterotrophic mutant of the cyanobacterium Synechocystis 6803. Inactivation of the psbA family. Plant Physiol 85: 1021–1025

    CAS  Google Scholar 

  • Jegerschöld C, Virgin I and Styring S (1990) Light-dependent degradation of the D1 protein in Photosystem II is accelerated after inhibition of the water splitting reaction. Biochemistry 29: 6179–6186

    PubMed  Google Scholar 

  • Jones LW and Kok B (1966) Photoinhibition of chloroplast reactions. Kinetics and action spectra. Plant Physiol 41: 1037–1043

    CAS  Google Scholar 

  • Kanervo E, Murata N and Aro EM (1997) Membrane lipid unsaturation modulates processing of the Photosystem II reaction-center protein D1 at low temperatures. Plant Physiol 114:841–849

    Article  CAS  PubMed  Google Scholar 

  • Kashino Y, Lauber WM, Carroll JA, Wang Q, Whitmarsh J, Satoh K and Pakrasi HB (2002) Proteomic analysis of a highly active Photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides. Biochemistry 41: 8004–8012

    Article  CAS  PubMed  Google Scholar 

  • Keegstra K and Cline K (1999) Protein import and routing system of chloroplasts. Plant Cell 11: 557–570

    Article  CAS  PubMed  Google Scholar 

  • Keren N, Gong H and Ohad I. (1995) Oscillations of reaction center II-D1 protein degradation in vivo induced by repetitive light flashes. J Biol Chem 270: 806–814

    Article  CAS  PubMed  Google Scholar 

  • Keren N, Berg A, van Kan PJM, Levanon H and Ohad I (1997) Mechanism of Photosystem II photoinactivation and D1 protein degradation at low light: The role of back electron flow. Proc Natl Acad Sci USA 94: 1579–1584

    Article  CAS  PubMed  Google Scholar 

  • Kettunen R, Pursiheimo S, Rintamäki E, van Wijk KJ and Aro EM (1997) Transcriptional and translational adjustments of psbA gene expression in mature chloroplasts during photoinhibition and subsequent repair of Photosystem II. Eur J Biochem 247: 441–448

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Klein PG and Mullet JE (1991) Ribosomes pause at specific sites during synthesis of membrane-bound chloroplast reaction center protein D1. J Biol Chem 266: 14931–14938

    CAS  PubMed  Google Scholar 

  • Kim J, Eichaker LA, Rüdiger W and Mullet JE (1994) Chlorophyll regulates accumulation of the plastid-encoded chlorophyll-proteins P700 and D1 by increasing apoprotein stability. Plant Physiol 104:907–916

    Article  CAS  PubMed  Google Scholar 

  • Klaff P and Gruissem W (1991) Changes in chloroplast mRNA stability during leaf development. Plant Cell 3: 517–529

    Article  CAS  PubMed  Google Scholar 

  • Koivuniemi A, Aro EM and Andersson B (1995) Degradation of D1 and D2 proteins of Photosystem II in higher plants is regulated by reversible phosphorylation. Biochemistry 34: 16022–16029

    Article  CAS  PubMed  Google Scholar 

  • Kok B (1956) On the inhibition of photosynthesis by intense light. Biochim Biophys Acta 21: 234–244

    CAS  PubMed  Google Scholar 

  • Krause GH (1988) Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol Plant 74: 566–574

    CAS  Google Scholar 

  • Krause GH and Behrend U (1986) ΔpH-dependent chlorophyll fluorescence quenching indicating a mechanism of protection against photoinhibition of chloroplasts. FEBS Lett 200: 298–302

    Article  CAS  Google Scholar 

  • Krieger A and Weis E (1993) The role of calcium in the pH-dependent control of Photosystem II. Photosynth Res 37: 117–130

    Article  CAS  Google Scholar 

  • Krieger-Liszkay A and Rutherford AW (1998) Influence of herbicide-binding on the redox potential of the quinone acceptor in Photosystem II: Relevance to photodamage and phototoxicity. Biochemistry 37: 17339–17344

    Article  CAS  PubMed  Google Scholar 

  • Krzywda S, Brzozowski AM, Verma C, Karata K, Ogura T and Wilkinson AJ (2002) The crystal structure of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli at 1.5 Å resolution. Structure 10: 1073–1083

    Article  CAS  PubMed  Google Scholar 

  • Kuroda M, Kobashi K, Kaseyama H and Satoh K (1996) Possible involvement of a low redox potential component(s) downstream of Photosystem I in the translational regulation of the D1 subunit of the Photosystem II reaction center in isolated pea chloroplasts. Plant Cell Physiol 37: 754–761

    CAS  Google Scholar 

  • Kyle DJ, Ohad I and Arntzen CJ (1984) Membrane protein damage and repair; selective loss of a quinone protein function in chloroplast membranes. Proc Natl Acad Sci USA 81: 4070–4074

    CAS  Google Scholar 

  • Lee H-Y, Chow WS and Hong Y-N (1999) Photoinactivation of Photosystem II in leaves of Capsicum annuum. Physiol Plant 105: 377–384

    Article  CAS  Google Scholar 

  • Lee H-Y, Hong Y-N and Chow WS (2001) Photoinactivation of Photosystem II complexes and photoprotection by nonfunctional neighbours in Capsicum annuum L leaves. Planta 212: 332–342

    Article  CAS  PubMed  Google Scholar 

  • Lee H-Y, Hong Y-N and Chow WS (2002) Putative effects of pH in intra-chloroplast compartments on photoprotection of functional Photosystem II complexes by photoinactivated neighbours and on recovery from photoinactivation in Capsicum annuum leaves. Funct Plant Biol 29: 607–619

    Article  CAS  Google Scholar 

  • Lindahl M, Tabak S, Cseke L, Pickersky E, Andersson B and Adam Z (1996) Identification, characterization and molecular cloning of a homologue to the bacterial FtsH protease in chloroplasts of higher plants. J Biol Chem 271: 29329–29334

    CAS  PubMed  Google Scholar 

  • Lindahl M, Spetea C, Hundal T, Oppenheim AB, Adam Z and Andersson B (2000) The thylakoid FtsH plays a role in the light-induced turn-over of the Photosystem II D1 protein. Plant Cell 12: 419–432

    Article  CAS  PubMed  Google Scholar 

  • Ludlow MM and Björkman O (1984) Paraheliotropic leaf movement in Siratro as a protective mechanism against drought-induced damage to primary photosynthetic reactions: Damage by excessive light and heat. Planta 161: 505–518

    Article  Google Scholar 

  • Mäenpää P, Andersson B and Sundby C (1987) Difference in sensitivity to photoinhibition between Photosystem II in the appressed and non-appressed thylakoid region. FEBS Lett 215:31–36

    Article  Google Scholar 

  • Matsubara S and Chow WS (2004) Populations of photoinactivated Photosystem II reaction centers characterized by chlorophyll a fluorescence lifetime in vivo. Proc Natl Acad Sci USA 101: 18234–18239

    Article  CAS  PubMed  Google Scholar 

  • Mattoo AK and Edelman M (1987) Intramembrane translocation and posttranslational palmitoylation of the chloroplast 32-kDa herbicide-binding protein. Proc Natl Acad Sci USA 84: 1497–1501

    CAS  PubMed  Google Scholar 

  • Mattoo AK, Hoffman-Falk H, Marder JB and Edelman M(1984) Regulation of protein metabolism: Coupling of photosynthetic electron transport to in vivo degradation of the rapidly metabolized 32-kilodalton protein of the chloroplast membranes. Proc Natl Acad Sci USA 81: 1380–1384

    CAS  Google Scholar 

  • Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: What modulates the rate of photodamage in vivo? Trends Plant Sci 4: 130–135

    Article  PubMed  Google Scholar 

  • Miyao M (1994) Involvement of active oxygen species in degradation of the D1 protein under strong illumination in isolated subcomplexes of Photosystem II. Biochemistry 33: 9722–9730

    Article  CAS  PubMed  Google Scholar 

  • Mohamed A and Jansson C (1989) Influence of light on accumulation of photosynthesis-related transcripts in the cyanobacterium Synechocystis 6803. Plant Mol Biol 13: 693–700

    Article  CAS  PubMed  Google Scholar 

  • Mühlbauer SK and Eichaker LA (1998) Light-dependent formation of the photosynthetic proton gradient regulates translation elongation in chloroplasts. J Biol Chem 273: 20935–20940

    PubMed  Google Scholar 

  • Mullet JE and Klein RR (1987) Transcription and mRNA stability are important determinants of higher plants chloroplast RNA levels. EMBO J 6: 1571–1579

    CAS  Google Scholar 

  • Mulo P, Eloranta T, Aro EM and Mäenpää P (1998) Disruption of a spe-like open reading frame alters polyamine content and psbA2 mRNA stability in the cyanobacterium Synechocystis sp. PCC 6803. Bot Acta 111: 71–76

    CAS  Google Scholar 

  • Murata N and Sugahara K (1969) Control of excitation transfer in photosynthesis. III. Light-induced decrease of chlorophyll a fluorescence related to photophosphorylation system in spinach chloroplasts. Biochim Biophys Acta 189: 182–192

    CAS  PubMed  Google Scholar 

  • Nilsson R, Brunner J, Hoffman NE and van Wijk KJ (1999) Interactions of ribosome nascent chain complexes of the chloroplast-encoded D1 thylakoid membrane protein with cpSRP54. EMBO J 18: 733–742

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y, Yamamoto H, Allakhverdiev SI, Inaba M, Yokota A and Murata N (2001) Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J 20: 5587–5594

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Yamamoto H, Inaba M, Hayashi H and Murata N (2004) Singlet oxygen inhibits the repair of Photosystem II by suppressing translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry 43: 11321–11330

    Article  CAS  PubMed  Google Scholar 

  • Niyogi K (1999) Photoprotection revisited: Genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50: 333–359

    Article  CAS  PubMed  Google Scholar 

  • Norén H, Svensson P and Andersson B (1999) Auxiliary photosynthetic functions of Arabidopsis thaliana — Studies in vitro and in vivo. Biosci Reports 19: 499–509

    Google Scholar 

  • Öquist G and Huner NPA (1991) Effects of cold acclimation on the susceptibility of photosynthesis to photoinhibition in Scots pine and in winter and spring cereals: A fluorescence analysis. Functional Ecol 5: 91–100

    Google Scholar 

  • Öquist G, Chow WS and Anderson JM (1992) Photoinhibition of photosynthesis represents a mechanism for the long-term regulation of Photosystem II. Planta 186: 450–460

    Article  Google Scholar 

  • Osmond CB (1981) Photorespiration and photoinhibition. Some implications for the energetics of photosynthesis. Biochim Biophys Acta 639: 77–89

    CAS  Google Scholar 

  • Osmond CB (1994) What is photoinhibition? Some insights from comparisons of shade and sun plants. In: Baker NR and Bowyer JR (eds) Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field, pp 1–24. BIOS Scientific Publishers, Oxford

    Google Scholar 

  • Oxborough K and Baker B (2000) An evaluation of the potential triggers of photoinactivation of Photosystem II in the context of a Stern-Volmer model for the downregulation and the reversible radical pair equilibrium model. Phil Trans Roy Soc London B 355: 1489–1498

    CAS  PubMed  Google Scholar 

  • Oxborough K and Horton P (1988) A study of the regulation and function of energy-dependent quenching in pea chloroplasts. Biochim Biophys Acta 934: 135–143

    CAS  Google Scholar 

  • Park Y-I, Chow WS and Anderson JM (1995) Light inactivation of functional Photosystem II in leaves of peas grown in moderate light depends on photon exposure. Planta 196: 401–411

    Article  CAS  Google Scholar 

  • Park Y-I, Anderson JM and Chow WS (1996a) Photoinactivation of Photosystem II and D1-protein synthesis in vivo are independent of the modulation of the photosynthetic apparatus by growth irradiance. Planta 198: 300–309

    Article  CAS  Google Scholar 

  • Park Y-I, Chow WS and Anderson JM (1996b) Chloroplast movement in the shade plant Tradescantia albiflora helps protect Photosystem II against light stress. Plant Physiol 111: 867–875

    CAS  PubMed  Google Scholar 

  • Park Y-I, Chow WS, Osmond CB and Anderson JM (1996c) Electron transport to oxygen mitigates against the photoinactivation of photosystem II in vivo. Photosynth Res 50: 23–32

    Article  CAS  Google Scholar 

  • Park Y-I, Chow, WS and Anderson JM (1997) Antenna size dependency of photoinactivation of Photosystem II in light-acclimated pea leaves. Plant Physiol 115: 151–157

    Article  CAS  PubMed  Google Scholar 

  • Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35: 15–44

    Article  CAS  Google Scholar 

  • Powles SB and Osmond CB (1979) Photoinhibition of intact attached leaves of C3 plants illuminated in the absence of both carbon dioxide and of photorespiration. Plant Physiol 64: 982–988

    CAS  Google Scholar 

  • Prásil O, Adir N and Ohad I (1992) Dynamics of Photosystem II: Mechanisms of photoinhibition and recovery process. In: Barber J (ed) The Photosystems: Structure, Function and Molecular Biology, Vol 11, pp 295–348. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Richter M, Goss R, Wagner B and Holzwarth AR (1999) Characterisation of the fast and slow reversible components of non-photochemical quenching in isolated pea thylakoids by picosecond time-resolved chlorophyll fluorescence analysis. Biochemistry 83: 12718–12726

    Google Scholar 

  • Rintamäki E and Aro EM (2001) Phosphorylation of Photosystem II subunits. In: Aro EM and Andersson B (eds) Regulation of Photosynthesis, pp 395–418. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Rintamäki E, Kettunen R and Aro EM (1996) Differential D1 dephosphorylation in functional and photodamaged Photosystem II centers. Dephosphorylation is a prerequisite for degradation of the damaged D1*. J Biol Chem 271: 14870–14875

    PubMed  Google Scholar 

  • Robinson JM (1988) Does O2 photoreduction occur within chloroplasts in vivo? Physiol Plant 72: 666–680

    CAS  Google Scholar 

  • Roelofs TA, Lee C-H and Holzwarth AR (1992) Global target analysis of picosecond chlorophyll fluorescence kinetics from pea chloroplasts. A new approach to the characterization of the primary processes in Photosystem II α-and β-units. Biophys J 61:1147–1163

    CAS  Google Scholar 

  • Rokka A, Suorsa M, Saleem A, Battchikova N and Aro EM (2005) Synthesis and assembly of thylakoid protein complexes. Multiple assembly steps of Photosystem II. Biochem J 386: 1–10

    Google Scholar 

  • Rova M, Mamedov F, Magnuson A, Fredriksson PO and Styring S (1998) Coupled activation of the donor and the acceptor side of Photosystem II during photoactivation of the oxygen evolving cluster. Biochemistry 37: 11039–11045

    Article  CAS  PubMed  Google Scholar 

  • Roy M and Barkan A (1998) A Sec Y homologue is required for the elaboration of the chloroplast thylakoid membrane and for normal chloroplast gene expression. J Biol Chem 141: 385–395

    CAS  Google Scholar 

  • Ruban AV, Pascal AA, Robert B and Horton P (2002) Activation of zeaxanthin is an obligatory event in the regulation of photosynthetic light harvesting. J Biol Chem 277: 7785–7789.

    CAS  PubMed  Google Scholar 

  • Sakamoto W, Tamura T, Hanba-Tomita Y, Sodmergen and Murata M (2002) The VAR1 locus of Arabidopsis encodes a chloroplastic FtsH and is responsible for leaf variegation in the mutant alleles. Genes Cells 7: 769–780

    Article  CAS  PubMed  Google Scholar 

  • Sane PV, Ivanov AG, Hurry V, Huner and Öquist G (2003) Changes in the redox potential of primary and secondary electron-accepting quinones in Photosystem II confer increased resistance to photoinhibition in low-temperature-acclimated Arabidopsis. Plant Physiol 132: 2144–2151

    Article  CAS  PubMed  Google Scholar 

  • Schatz GH, Brock H and Holzwarth AR (1988) Kinetic and energy model for the primary processes of Photosystem II. Biophys J 54: 397–405

    CAS  Google Scholar 

  • Schnell DJ (1998) Protein targeting to the thylakoid membrane. Annu Rev Plant Physiol Plant Mol Biol 49: 97–106

    Article  CAS  PubMed  Google Scholar 

  • Schubert M, Petersson UA, Haas BJ, Funk C, Schröder WP and Kieselbach T (2002) Proteome map of the chloroplast lumen of Arabidopsis thaliana. J Biol Chem 277: 8354–8365

    CAS  PubMed  Google Scholar 

  • Sétif P, Hervo G and Mathis P (1981) Flash-induced absorption changes in Photosystem I radical pair or triplet formation? Biochim Biophys Acta 638: 257–267

    Google Scholar 

  • Shen Y-K, Chow WS, Park Y-I and Anderson JM (1996) Photoinactivation of Photosystem II by cumulative exposure to short light pulses during the induction period of photosynthesis. Photosynth Res 47: 51–59

    Article  CAS  Google Scholar 

  • Shi L-X, Lorkovic ZJ, Oelmüller R and Schröder WP (2000) The low molecular mass PsbW protein is involved in the stabilization of the dimeric Photosystem II complex in Arabidopsis thaliana. J Biol Chem 275: 37945–37950

    CAS  PubMed  Google Scholar 

  • Shipton CA and Barber J (1991) Photoinduced degradation of the D1 polypeptide in isolated reaction centers of Photosystem II: Evidence for an autoproteolytic process triggered by the oxidizing side. Proc Natl Acad Sci USA 88: 6691–6695

    CAS  PubMed  Google Scholar 

  • Silva P, Thompson E, Bailey S, Kruse O, Mullineaux CW, Robinson C, Mann NH and Nixon PJ (2003) FtsH is involved in the early stages of repair of Photosystem II in Synechocystis sp PCC 6803. Plant Cell 15: 2152–2164.

    Article  CAS  PubMed  Google Scholar 

  • Sokolenko A, Pojidaeva E, Zinchenko V, Panichkin V, Glaser VM, Herrmann GR and Shestakov SV (2002) The gene complement for proteolysis in the cyanobacterium Synechocystis sp. PCC 6803 and Arabidopsis thaliana chloroplasts. Curr Genet 41: 291–310

    Article  CAS  PubMed  Google Scholar 

  • Somanchi A and Mayfield SP (2001) Regulation of chloroplast translation. In: Aro EM and Andersson B (eds) Regulation of Photosynthesis, pp 137–151. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Sonoike K (1996) Photoinhibition of Photosystem I: Its physiological significance in the chilling sensitivity of plants. Plant Cell Physiol 37: 239–247

    CAS  Google Scholar 

  • Sonoike K (1998) Various aspects of inhibition of photosynthesis under light/chilling stress: ‘Photoinhibition at chilling temperature’ versus ‘chilling damage in the light’. J Plant Res 111:121–129

    Google Scholar 

  • Sundby C, McCaffery S and Anderson JM (1993) Turnover of the Photosystem II D1 protein in higher plants under photoinhibitory and nonphotoinhibitory irradiance. J Biol Chem 268: 25476–25482

    CAS  PubMed  Google Scholar 

  • Suorsa M, Regel RE, Paakkarinen V, Battchikova N, Herrmann RG and Aro EM (2004) Protein assembly of Photosystem II and accumulation of subcomplexes in the absence of low molecular weight subunits PsbL and PsbJ. Eur J Biochem. 271: 96–107

    Article  CAS  PubMed  Google Scholar 

  • Swiatek M, Kuras M, Sokolenko A, Higgs D, Olive J, Cinque G, Muller B, Eichaker LA, Stern DB, Bassi R, Herrmann RG and Wollman F-A (2001) The chloroplast gene ycf9 encodes a Photosystem II (PSII) core subunit, PsbZ, that participates in PSII supramolecular architecture. Plant Cell 13: 347–367

    Article  Google Scholar 

  • Taniguchi M, Kuroda H and Satoh K (1993) ATP-dependent protein synthesis in isolated pea chloroplasts. FEBS Lett 317: 57–61

    Article  CAS  PubMed  Google Scholar 

  • Telfer A (2002) What is β-carotene doing in the Photosystem two reaction center? Phil Trans R Soc London B 357: 1431–1440

    CAS  Google Scholar 

  • Terashima I, Funayama S and Sonoike K (1994) The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is Photosystem I, not Photosystem II. Planta 193: 300–306

    Article  CAS  Google Scholar 

  • Theg SM, Filar LJ and Dilley RA (1986) Photoinhibition of chloroplasts already inhibited on the oxidising site of Photosystem II. Biochim Biophys Acta 849: 104–111

    CAS  Google Scholar 

  • Thompson LM and Bradvig GW (1988) Cytochrome b-559 may function to protect Photosystem II from photoinhibition. Biochemistry 27: 6653–6658

    CAS  PubMed  Google Scholar 

  • Trebst A, Depka B, Kraft B and Johanningmeier U (1988) The QB site modulates the conformation of the Photosystem II reaction center polypeptide. Photosynth Res, 18: 163–177

    Article  CAS  Google Scholar 

  • Trissl H-W and Lavergne J (1995) Fluorescence induction from Photosystem II: Analytical equations for the yields of photochemistry and fluorescence derived from analysis of a model including exciton-radical pair equilibrium and restricted energy transfer between photosynthetic units. Aust J Plant Physiol 22: 183–193

    CAS  Google Scholar 

  • Tyystjärvi E and Aro E-M (1996) The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc Natl Acad Sci USA 93: 2213–2218

    PubMed  Google Scholar 

  • Tyystjärvi E, Kettunen R and Aro E-M (1994) The rate constant of photoinhibition in vitro is independent of the antenna size of Photosystem II but depends on temperature. Biochim Biophys Acta 1186: 177–185

    Google Scholar 

  • Tyystjärvi T, Mulo P, Mäenpää P and Aro E-M (1996) D1 polypeptide degradation may regulate psbA gene expression at transcriptional and translational levels in Synechocystis sp. PCC 6803. Photosynth Res 47: 111–120

    Article  Google Scholar 

  • Tyystjärvi T, Herranen M and Aro E-M (2001) regulation of translation elongation in cyanobacteria: Membrane targeting of the ribosome nascent-chain complexes controls the synthesis of D1 protein. Mol Microbiol 40: 467–484

    Google Scholar 

  • van Gorkom HJ and Schelvis JPM (1993) Kok’s oxygen clock: What makes it tick? The structure of P680 and consequences of its oxidising power. Photosynth Res 38: 297–301

    Article  Google Scholar 

  • van Mieghem F, Brettel K, Hillmann B, Kamlowski A, Rutherford WA and Schlodder E (1995) Charge recombinations in Photosystem II. I. Yields, recombination pathways and kinetics of the primary pair. Biochemistry 34: 4798–4813

    PubMed  Google Scholar 

  • Vasilikiotis C and Melis A (1994) Photosystem II reaction center damage and repair cycle: Chloroplast acclimation strategy to irradiance stress. Proc Natl Acad Sci USA 91: 7222–7226

    CAS  PubMed  Google Scholar 

  • Vavilin DV and Vermaas WFJ (2000) Mutations in the CD-loop region of the D2 protein in Synechocystis sp. PCC 6803 modify charge recombination pathways in Photosystem II in vivo. Biochem 39: 14831–14838

    CAS  Google Scholar 

  • Zerges W (2002) Does complexity constrain organelle evolution? Trends Plant Sci 7: 175–182

    Article  CAS  PubMed  Google Scholar 

  • Zhang L and Aro E-M (2002) Synthesis, membrane insertion and assembly of the chloroplast-encoded D1 protein into Photosystem II. FEBS Lett 512: 13–18

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Paakkarinen V, van Wijk KJ and Aro E-M (1999) Co-translational assembly of the D1 protein into Photosystem II. J Biol Chem 274: 16062–16067

    CAS  PubMed  Google Scholar 

  • Zhang L, Paakkarinen V, van Wijk KJ and Aro E-M (2000) Biogenesis of the chloroplast-encoded D1 protein: Regulation of translational elongation, insertion, and assembly into Photosystem II. Plant Cell 12: 1769–1781

    CAS  PubMed  Google Scholar 

  • Zhang L, Paakkarinen V, Suorsa M and Aro E-M (2001) A secY homologue is involved in chloroplast-encoded D1 protein biogenesis. J Biol Chem 276: 37809–37814

    CAS  PubMed  Google Scholar 

  • Zurawski G, Bohnert HJ, Whitfeld PR and Bottomley W (1982) Nucleotide sequence of the gene for Mr32,000 thylakoid membrane protein from Spinacia oleracea and Nicotiana debneyi predicts a totally conserved primary translation product of Mr 38,950. Proc Natl Acad Sci USA 79: 7699–7703

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Chow, W.S., Aro, EM. (2005). Photoinactivation and Mechanisms of Recovery. In: Wydrzynski, T.J., Satoh, K., Freeman, J.A. (eds) Photosystem II. Advances in Photosynthesis and Respiration, vol 22. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4254-X_28

Download citation

Publish with us

Policies and ethics