Skip to main content

Photosystem II: Structural Elements, the First 3D Crystal Structure and Functional Implications

  • Chapter
Photosystem II

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 22))

Summary

In the first part of this chapter structural elements of Photosystem II (PS II) and their functional behavior which have been elucidated primarily through special spectroscopic techniques are described. A transmembrane charge separation was identified as the primary act of light-energy conversion. The chlorophyll-containing P680 complex was discovered as the electron donor of PS II at the lumenal side of the membrane while the bound plastoquinone QA was discovered as the first stable electron acceptor and localized at the stromal side of the membrane. This membrane-spanning chlorophyll/quinone couple represents the PS II reaction center (RC) that drives water oxidation. This couple also provides a model for the RC of Photosystem I (PS I) and of other photosystems which drive different redox reactions. Two intermediate chlorin molecules located between the chlorophyll/quinone couple were found to function in the path of fast electron transfer from P680 across the membrane to QA while a pool of plastoquinones was found to function in a transmembrane path for electrons from reduced QA to PS I and for protons from the stroma to the membrane lumen. Primary electron donors located at the membrane base of PS II and PS I were found to be organized as chlorophyll pairs. Electron microscopy identified PS II as a dimer and PS I as a trimer. Based on the sequence homologies between PS II, PS I and the bacterial RC, predictions were made on the helical structure of the PS II complex. The preceding results served as the essential basis for the analysis and interpretation of the 3D crystal structures of PS I and PS II. In the second part of this chapter, the first PS II crystals capable of water oxidation are described. Based on the X-ray structure analysis of these crystals at 3.6 – 3.8 Å resolution, the framework of PS II, the architecture of the antenna system, the electron transfer chain, and the manganese cluster are discussed. The manganese environment is considered in terms of the more recent structure at 3.2 Å resolution. In the third part, functional events are described, especially changes in manganese valences, deprotonations, and the water states which were followed spectroscopically during the quaternary cycling of the water-oxidizing complex and which are summarized in a functional model. Finally, the implication of the high oxidation potential of the PS II RC is discussed as well as the functional cooperation between the dimeric electron donor P680, the monomeric electron donor chlorophyll D1 and the pheophytin D1 within the electron transfer chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen JP and Williams JC (1995) Relationship between the oxidation potential of the bacteriochlorophyll dimer and electron transfer in photosynthetic reaction centers. J Bioenergetics and Biomembranes 27: 275–283

    CAS  Google Scholar 

  • Barry BA, Boerner RJ and de Paula JC (1994) The use of cyano-bacteria in the study of the structure and function of PS II. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 217–257, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Barter LMC, Durrant JR and Klug DR (2003) A quantitative structure-function relationship for the Photosystem II reaction center: Supermolecular behavior in natural photosynthesis. Proc Nat Acad Sci USA 100: 946–951

    Article  CAS  PubMed  Google Scholar 

  • Biesiadka J, Loll B, Kern J, Irrgang KD and Zouni A (2004) Crystal structure of cyanobacterial Photosystem II at 3.2 Å resolution: A closer look at the Mn cluster. Phys Chem Chem Phys 6: 4733–4736

    Article  CAS  Google Scholar 

  • Boekema EJ, Dekker JP, van Heel MG, Rögner M, Saenger W, Witt I and Witt HT (1987) Evidence for a trimeric organization of the Photosystem I complex from the thermophilic cyanobacterium Synechococcus sp. FEBS Lett 217: 283–286

    Article  CAS  Google Scholar 

  • Bouges B (1971) Action of hydroxylamine on the O2 evolution of Chlorella and chloroplasts of spinach. Biochim Biophys Acta 234, 103–112

    CAS  PubMed  Google Scholar 

  • Bouges-Bocquet B (1973) Electron transfer between two photo-systems in spinach chloroplasts. Biochim Biophys Acta 314: 250–256

    CAS  PubMed  Google Scholar 

  • Brettel K, Schlodder E and Witt HT (1984) Nanosecond reduction kinetics of photooxidized chlorophyll a +II (P680) in single flashes as a probe for the electron pathway, H+ release and charge accumulation in the O2-evolving complex. Biochim Biophys Acta 766: 4030–415

    Google Scholar 

  • Brettel K, Sétif P and Mathis P (1986) Flash-induced absorption changes in Photosystem I at low temperature: Evidence that the electron acceptor A1 is vitamin K1. FEBS Lett 203: 220–224

    Article  CAS  Google Scholar 

  • Carrell TG, Tyry shin AM and Dismukes GC (2002) An evaluation of structural models for the photosynthetic water-oxidizing complex derived from spectroscopic and X-ray diffraction signatures. J Biol Inorg Chem 7: 2–22

    Article  CAS  PubMed  Google Scholar 

  • Cinco RM, McFarlane Holman KL, Robblee JH, Yano J, Pizarro SA, Bellacchio E, Sauer K and Yachandra VK (2002) Calcium EXAFS establishes the Mn-Ca cluster in the oxygen-evolving complex of Photosystem II. Biochemistry 41: 12928–12933

    Article  CAS  PubMed  Google Scholar 

  • Clayton RK and Straley SC (1970) An optical absorption change that could be due to reduction of the primary photochemical electron acceptor in photosynthetic reaction centers. Biochem Biophys Res Commun 39: 1114–1119

    Article  CAS  PubMed  Google Scholar 

  • Datta SN, Parandekar PV and Lochan RC (2001) Identity of green plant reaction centers from quantum chemical determination of redox potentials of special pairs. J Phys Chem B 105:1442–1451

    Article  CAS  Google Scholar 

  • Dau H, Liebisch P and Haumann M (2003) X-ray absorption spectroscopy to analyze nuclear geometry and electronic structure of biological metal centers — potential and questions examined with special focus on the tetra-nuclear manganese complex of oxygenic photosynthesis. Anal Bioanal Chem 376:562–583

    Article  CAS  PubMed  Google Scholar 

  • Debus R (2001) Amino acid residues that modulate the properties of tyrosine Yz and the manganese cluster in the water oxidizing complex of Photosystem II. Biochim Biophys Acta 1503:164–186

    CAS  PubMed  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1985) Structure of the protein subunits in photosynthetic reaction centers of Rhodopseudomonas viridis at 3 Å resolution. Nature 318:618–624

    Article  Google Scholar 

  • Dekker JP, Boekema EJ, Witt HT and Rögner M (1988) Refined purification and further characterization of oxygen evolving and Tris-treated Photosystem II particles from the thermophilic cyanobacterium Synechococcus sp. Biochim Biophys Acta 936:307–318

    CAS  Google Scholar 

  • Diner BA and Rappaport F (2002) Structure, dynamics, and energetics of the primary photochemistry of Photosystem II of oxygenie photosynthesis. Ann Rev Plant Physiol Plant Mol Biol 53: 551–580

    CAS  Google Scholar 

  • Diner BA, Schlodder E, Nixon PJ, Coleman WJ, Rappaport F, Lavergne J, Vermaas WFJ and Chisholm DA (2001) Sitedirected mutations at D1-His 198 and D2-Hisl97 of Photosystem II in Synechocystis PCC 6803: Sites of primary charge separation and cation and triplet stabilization. Biochemistry 40:9265–9281

    Article  CAS  PubMed  Google Scholar 

  • Dismukes G and Siderer Y (1981) Intermediates of a polynuclear manganese center involved in photosynthetic oxidation of water. Proc Natl Acad Sci USA 78: 274–278

    CAS  Google Scholar 

  • Döring G, Stiehl HH and Witt HT (1967) A second chlorophyll reaction in the electron chain of photosynthesis — registration by the repetitive excitation technique. Z Naturforsch 22b: 639–644

    Google Scholar 

  • Döring G, Bailey JL, Kreutz W and Witt HT (1968a) The active chlorophyll-aII in light reaction II of photosynthesis. Naturwiss 55:219–224

    Article  PubMed  Google Scholar 

  • Döring G, Bailey JL, Kreutz W, Weikard and Witt HT (1968b) The action of two chlorophyll aI molecules in light reaction I of photosynthesis. Naturwiss 55:219–200

    Article  PubMed  Google Scholar 

  • Döring G, Renger G, Vater J and Witt HT (1969) Properties of the photoactive chlorophyll-aII in photosynthesis. Z Naturforsch 24b:1139–1143

    Google Scholar 

  • Durrant JR, Klug DR, Kwa SLS, von Grondelle R, Porter G and Dekker JP (1995) A multimer model for P680, the primary electron donor of Photosystem II. Proc Natl Acad Sci USA 92: 4798–4802

    CAS  PubMed  Google Scholar 

  • Eijekelhoff E and Dekker JP (1995) Determination of the pigment stoichiometry of the photochemical reaction center of Photosystem II. Biochim Biophys Acta 1231: 21–28

    Google Scholar 

  • Emrich HM, Junge W and Witt HT (1969) Further evidence for an optical response of chloroplast bulk pigments to a light-induced electrical field in photosynthesis. Z Naturforsch 24b: 1144–1146

    Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303: 1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Gerken S, Brettel K, Schlodder E and Witt HT (1987) Direct observation of the immediate electron donor to chlorophyll a +II (P680+) in oxygen-evolving Photosystem II complexes. Resolution of nanosecond kinetics in the UV. FEBS Lett 223: 376–380

    Article  CAS  Google Scholar 

  • Gerken S, Brettel K, Schlodder E and Witt HT (1988) Optical characterization of the immediate electron donor to Chl a +II in O2-evolving PS II complexes. Tyrosine as possible electron carrier between Chl aII and the water-oxidizing manganese complex. FEBS Lett 237: 69–76

    Article  CAS  Google Scholar 

  • Gerken S, Dekker JP, Schlodder E and Witt HT (1989) Studies on the multiphasic charge recombination between chlorophyll a +II and plastoquinone QA in PS II complexes. U V difference spectrum of Chl a +II /Chi aII. Biochim Biophys Acta 977: 52–61

    CAS  Google Scholar 

  • Goussias C, Boussac A and Rutherford AW (2002) Photosystem II and photosynthetic oxidation of water: An overview. Phil Trans R Soc Lond B 357: 1369–1381

    Article  CAS  Google Scholar 

  • Greenfield SR, Seibert M, Govindjee and Wasielewski MR (1997) Direct measurement of the effective rate constant for primary charge separation in isolated Photosystem II reaction centers. J Phys Chem B 101: 2251–2255

    Article  CAS  Google Scholar 

  • Greenfield SR, Seibert M and Wasielewski MR (1999) Direct measurement of the effective rate constant for primary charge separation in isolated Photosystem II reaction centers. J Phys Chem B 103:8364–8374

    Article  CAS  Google Scholar 

  • Hanley J, Deligiannakis Y, Pascal A, Faller P and Rutherford AW (1999) Carotenoid oxidation in Photosystem II. Biochemistry 38:8189–8195

    Article  CAS  PubMed  Google Scholar 

  • Haumann M, Müller C, Liebisch P, Iuzzolino L, Dittmer J, Grabolle M, Neisius T, Meyer-Klaucke W and Dau H (2004) Structural and oxidation state changes of the Photosystem II manganese complex in four transitions of the water oxidation cycle (S0→S1, S1→S2, S2→S3,4⇒S0) characterized by x-ray absorption spectroscopy at 20 K as well as at room temperature. Biochemistry 44: 1894–1908

    Google Scholar 

  • Hauska G, Schütz M and Büttner M (1996) The Cyt otb6f complex-composition, structure and function. In: Ort DR and Yokum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 377–398. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Ishikita H, Loll B, Biesiadka J, Saenger W and Knapp E-W (2005) Redox potentials of chlorophylls in the Photosystem II reaction center. Biochemistry 44: 4118–4124

    CAS  PubMed  Google Scholar 

  • Jackson JB and Crofts AB (1969) The high energy state in chro-matophores from Rhodopseudomonas sphaeroides. FEBS Lett 4: 185–189

    Article  CAS  PubMed  Google Scholar 

  • Joliot P and Kok B (1975) Oxygen evolution in photosynthesis. In Govindjee (ed), Bioenergetics of Photosynthesis, Academic Press, New York, 387–412

    Google Scholar 

  • Jordan P, Fromme P, Klukas O, Witt HT, Saenger W and Krauß N (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5 Å Resolution. Nature 411: 909–917

    Article  CAS  PubMed  Google Scholar 

  • Junge W and Witt HT (1968) On the ion transport system of photosynthesis — Investigations on a molecular level. Z Naturforsch 23b: 244–254

    Google Scholar 

  • Käß H, Fromme P, Witt HT and Lubitz W (2001) Orientation and electronic structure of the oxidized primary donor P700+ in Photosystem I: A single crystal EPR and ENDOR study. J Phys Chem 105: 1225–1239

    Google Scholar 

  • Kamiya N and Shen JR (2003) Crystal structure of oxygen-evolving Photosystem II from Thermosynechococcus vulcanus at 3.7 Å resolution. Proc Nat Acad Sci USA 100: 98–103

    Article  CAS  PubMed  Google Scholar 

  • Ke B (2001) Photosynthesis: Photobiochemistry and Photobiophysics. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Kern J, Loll B, Lüneberg C, DiFiore D, Biesiadka J, Irrgang K-D and Zouni A (2005) Purification, characterization and crystallization of Photosystem II from Thermosynechococcus elongatus cultivated in a new type of photobioreactor. Biochim Biophys Acta 1706: 147–157

    CAS  PubMed  Google Scholar 

  • Klimov VV and Krasnovskii AA (1981) Pheophytin as the primary electron acceptor in Photosystem II reaction center. Photosynthetica 15: 592–609

    CAS  Google Scholar 

  • Kok B (1956) On the reversible absorption change at 705 mμ in photosynthetic organisms. Biochim Biophys Acta 22: 399–401

    Article  CAS  PubMed  Google Scholar 

  • Kok B (1961) Partial purification and determination of oxidation reduction potential of the photosynthetic chlorophyll complex absorbing at 700 mμ. Biochim Biophys Acta 48: 527–533

    Article  CAS  PubMed  Google Scholar 

  • Konermann L, Yruela I and Holzwarth AR (1997) Pigment assignment in the absorption spectrum of the Photosystem II reaction center by site-selection fluorescence spectroscopy. Biochemistry 36: 7498–7450

    CAS  PubMed  Google Scholar 

  • Krauß N, Hinrichs W, Witt I, Fromme P, Pritzkow W, Dauter Z, Betzel Ch, Wilson KS, Witt HT and Saenger W (1993) Three-dimensional structure of system I of photosynthesis at 6 Å resolution. Nature 361: 326–331

    Google Scholar 

  • Kretschmann H and Witt HT (1993) Chemical reduction of the water splitting enzyme system of photosynthesis and its light-induced reoxidation characterized by optical and mass spectrometric measurements. Biochim Biophys Acta 1144: 331–345

    CAS  Google Scholar 

  • Kretschmann H, Pauly S and Witt HT (1991) Evidence for a chemical reaction of hydroxylamine with the photosynthetic water splitting enzyme S in the dark — possible states of manganese and water in the S cycle. Biochim Biophys Acta 1059: 208–214

    CAS  Google Scholar 

  • Kretschmann H, Schlodder E and Witt HT (1996) Net charge oscillation and proton release during water oxidation in photosynthesis. An electrochromic band shift study at pH 5.5–7.0. Biochim Biophys Acta 1274: 1–8

    Google Scholar 

  • Kuhn H (1986) Electron transfer mechanism in the reaction center of photosynthetic bacteria. Physical Rev A 34: 3409–3425

    CAS  Google Scholar 

  • Kuhl H, Rögner M, van Breemn JFL and Boekema EJ (1999) Location of cyanobacterial Photosystem II donor-side subunits by electron microscopy and supramolecular organization of Photosystem II in the thylakoid membrane. Eur J Biochem 266: 453–459

    Article  CAS  PubMed  Google Scholar 

  • Maggiora LL, Petke JD, Gopal D, Iwamoto RT, Maggiora GM (1985) Experimental and theoretical studies of Schiff base chlorophylls. Photochem Photobiol 42: 69–75

    CAS  Google Scholar 

  • Malkin R (1986) On the function of two vitamin K1 molecules in the PS I-electron acceptor complex. FEBS Lett 208: 343–346

    CAS  Google Scholar 

  • Matysik J, Gast P, van Gorkom HJ, Hoff AJ and de Groot HJM (2000) Photochemically induced nuclear spin polarization in reaction centers of Photosystem II observed by 13C-solid-state NMR reveals a strongly asymmetric electronic structure of the P .+680 primary donor chlorophyll. Proc Natl Acad Sci USA 97:9865–9870

    Article  CAS  PubMed  Google Scholar 

  • Messinger J, Robblee JH, Bergmann U, Fernandez C, Glatzel P, Visser H, Cinco RM, McFarlane KL, Bellacchio E, Pizarro SA, Cramer SP, Sauer K, Klein MP and Yachandra VK (2001) Absence of Mn-centered oxidation in the S2→S3 transitions: Implication for the mechanism of photosynthetic water oxidation. J Am Chem Soc 123: 7804–7820

    Article  CAS  PubMed  Google Scholar 

  • Michel H and Deisenhofer J (1988) Relevance of the photosynthetic reaction center from purple bacteria to the structure of Photosystem II. Biochemistry 27: 17

    Article  Google Scholar 

  • Mulkidjanian AY (1999) Photosystem II of green plants: On the possible role of retarded protonic relaxation in water oxidation. Biochim Biophys Acta 1410: 1–6

    CAS  PubMed  Google Scholar 

  • Nield J, Orlova EV, Morris EP, Gowen B, van Heel M and Barber J (2000) 3D map of the plant Photosystem II supercomplex obtained by cryoelectron microscopy and single particle analysis. Nature Struct Biol 7: 44–47

    CAS  PubMed  Google Scholar 

  • Noguchi (2002) Dual role of triplet localization on the accessory chlorophyll in the Photosystem II reaction center: Photoprotec-tion and photodamage of the D1 protein. Plant Cell Physiol 43:1112–1116

    Article  CAS  PubMed  Google Scholar 

  • Norris JR, Uphaus RA, Crespi HL and Katz JJ (1971) Electron spin resonance of chlorophyll and the origin of signal I in photosynthesis. Proc Natl Acad Sci USA 68: 625–628

    CAS  PubMed  Google Scholar 

  • Rappaport F, Guergova-Kuras M, Nixon PJ, Diner BA and Lavergne J (2002) Kinetics and pathways of charge recombination in photosystems. Biochemistry 41: 8518–8527

    Article  CAS  PubMed  Google Scholar 

  • Raszewski G, Saenger W and Renger Th (2005) Theory of optical spectra of Photosystem II reaction center: Location of the triplet state and the identity of the primary electron donor. Biophys J 88: 966–998

    Google Scholar 

  • Rautter J, Lendzian F, Lubitz W, Wang S and Allen JP (1994) Comparative study of reaction centers from photosynthetic purple bacteria — electron-paramagnetic-resonance and electron-nuclear double-resonance spectroscopy. Biochemistry 33: 12077–12084

    Article  CAS  PubMed  Google Scholar 

  • Rigby SEJ, Nugent JHA and O’Malley PJ (1994) ENDOR and special triple resonance studies of chlorophyll cation radicals in photosystem 2. Biochemistry 33: 10043–10050

    CAS  PubMed  Google Scholar 

  • Rögner M, Dekker JP, Boekema EJ and Witt HT (1987) Size, shape and mass of the oxygen-evolving Photosystem II complex from the thermophilic cyanobacterium Synechococcus sp. FEBS Lett 219: 207–211

    Article  Google Scholar 

  • Rögner M, Mühlenhoff U, Boekema EJ and Witt HT (1990) Mono, di-and trimeric PS I reaction center complexes isolated from the thermophilic cyanobacterium Synechococcus sp. Size, shape and activity. Biochim Biophys Acta 1015: 415–424

    Google Scholar 

  • Rüppel H and Witt HT (1969) Measurements of fast reactions by single and repetitive excitation with pulses of electromagnetic radiation. In: Kustin K (ed) Methods in Enzymology, pp 317–379. Academic Press, New York

    Google Scholar 

  • Saygin Ö and Witt HT (1985a) Evidence for the electrochromic identification of the change of charges in the four oxidation steps of the photoinduced water cleavage in photosynthesis. FEBS Lett 187:224–226

    Article  CAS  Google Scholar 

  • Saygin Ö and Witt HT (1985b) Sequence of the redox changes of manganese and pattern of the changes of charges during water cleavage in photosynthesis. Photobiochem Photobiophys 10: 71–82

    CAS  Google Scholar 

  • Saygin Ö and Witt HT (1987) Optical characterization of intermediates in the water splitting enzyme system of photosynthesis — possible states and configurations of manganese and water. Biochim Biophys Acta 893: 452–469

    CAS  Google Scholar 

  • Schatz GH and Witt HT (1984a) Extraction and characterization of oxygen-evolving Photosystem II complexes from a thermophilic cyanobacterium Synechococcus sp. Photobiochem Photobiophys 7: 1–4

    CAS  Google Scholar 

  • Schatz GH and Witt HT (1984b) Characterization of electron transport in oxygen-evolving Photosystem II complexes from a thermophilic cyanobacterium Synechococcus sp. Photobiochem Photobiophys 7: 77–89

    CAS  Google Scholar 

  • Schliephake W, Junge W and Witt HT (1968) Correlation between field formation, proton translocation and the light reactions in photosynthesis. Z Naturforsch 23b: 1571–1578

    Google Scholar 

  • Schlodder E and Witt HT (1999) Stoichiometry of proton release from the catalytic center in photosynthetic water oxidation. J Biol Chem 274: 30387–30392

    Article  CAS  PubMed  Google Scholar 

  • Schmidt S, Reich R and Witt HT (1971) Electrochromism of chlorophylls and carotenoids inmultilayers and in chloroplasts. Naturwiss 58: 414

    CAS  PubMed  Google Scholar 

  • Schmidt S, Reich R and Witt HT (1972) Electrochromic measurements in vitro as a test for the interpretation of field-indicating absorption changes in photosynthesis. In: Forti G, Avron M, Melandri A (eds) Proceedings Second International Congress on Photosynthesis Research, Stresa, 1971, pp 1087–1095. Dr. W Junk NV Publishers, The Hague

    Google Scholar 

  • Schubert WD, Klukas O, KrauB N, Saenger W, Fromme P and Witt HT (1997) Photosystem I of Synechococcus elongatus at 4 Å resolution: A comparative structure analysis. J Mol Biol 272: 741–769

    Article  CAS  PubMed  Google Scholar 

  • Schubert WD, Klukas O, Saenger W, Witt HT, Fromme P and Krauß N (1998) A common ancestor for oxygenic and an-oxygenic photosynthetic systems: A comparison based on the structural model of Photosystem I. J Mol Biol 280: 297–314

    Article  CAS  PubMed  Google Scholar 

  • Seibert M and Wasielewski M (2003) The isolated Photosystem II reaction center: First attempts to directly measure the kinetics of primary charge separation. Photosynth Res 76: 263–268

    Article  CAS  PubMed  Google Scholar 

  • Shen JR, Quian M, Inoue Y and Burnap RL (1998) Functional characterization of Synechocystis sp. PCC 6803 delta psbU and delta psbV mutants reveals important roles of Cyt c550 in cyano-bacterial oxygen evolution. Biochemistry 37: 1551–1558

    CAS  PubMed  Google Scholar 

  • Shuvalov VA and Klimov VV (1976) The primary photoreaction in the complex cytochrome P890-P760 (bacteriopheophytin 760) of Chromatium minutissimum at low redox potentials. Biochim Biophys Acta 440: 587–599

    CAS  PubMed  Google Scholar 

  • Slooten L (1972) Electron acceptors in reaction center preparations from photosynthetic bacteria. Biochim Biophys Acta 275:208–218

    CAS  PubMed  Google Scholar 

  • Smith PJ and Pace RJ (1996) Evidence for two forms of the g=4.1 signal in the S2 state of Photosystem II. Two magnetically isolated manganese dimers. Biochim Biophys Acta 1275: 213–220

    Google Scholar 

  • Stiehl HH and Witt HT (1968) Die kurzzeitigen ultravioletten Differenzspektren bei der Photosynthese. Z Naturforsch 23b: 220–224

    Google Scholar 

  • Stiehl HH and Witt HT (1969) Quantitative treatment of the function of plastoquinone in photosynthesis. Z Naturforsch 24b:1588–1598

    Google Scholar 

  • Tetenkin VL, Gulayev BA, Seibert M and Rubin AB (1989) Spectral properties of stabilized D1/D2/cytochrome b-559 Photosystem II reaction center complex. Effects of Triton X-100, the redox state of pheophytin and β-carotene. FEBS Lett 250: 459–463

    Article  CAS  Google Scholar 

  • Tiemann R, Renger G, Gräber P and Witt HT (1979) The plastoquinone pool as possible hydrogen pump in photosynthesis. Biochim Biophys Acta 546: 498–519

    CAS  PubMed  Google Scholar 

  • Tommos C and Babcock GT (2000) Proton and hydrogen currents in photosynthetic water oxidation. Biochim Biophys Acta 1458: 199–219

    CAS  PubMed  Google Scholar 

  • Trebst A (1985) The topology of the plastoquinone and herbicide binding peptides of Photosystem II in the thylakoid membrane. Z Naturforsch 41c: 240–245

    Google Scholar 

  • van Gorkom HJ (1974) Identification of the reduced primary electron acceptor of Photosystem II as a bound semiquinone anion. Biochim Biophys Acta 347: 439–442

    PubMed  Google Scholar 

  • van Mieghem FJE, Satoh K and Rutherford AW (1991) A chlorophyll tilted 30° relative to the membrane in the Photosystem II reaction center. Biochim Biophys Acta 1058: 379–385

    Google Scholar 

  • van Mieghem F, Brettel K, Hillmann B, Kamlowski A, Rutherford AW and Schlodder E (1995) Charge recombination reactions in Photosystem II. 1. Yields, recombination pathways and kinetics of the primary pair. Biochemistry 34: 4789–4813

    Google Scholar 

  • Vasmel H and Amesz J (1983) Photoreduction of manaquinone in reaction centers of green photosynthetic bacterium Chlorqflexus aurantiacus. Biochim Biophys Acta 724: 118–121

    CAS  Google Scholar 

  • Velthuys BR and Amesz J (1974) Charge accumulation and the reducing side of Photosystem 2 of photosynthesis. Biochim Biophys Acta 333: 85–94

    CAS  Google Scholar 

  • Witt HT (1967) A. Direct measurements of reactions in the 10−1 to 10−8 second range by single and repetitive excitations with pulses of electromagnetic waves (flashes, microwaves, giant laser pulses). B. On the analysis of photosynthesis by pulse techniques in the 10−1 to 10−8 second range. In: Claesson S (ed) Fast Reactions and Primary Processes in Chemical Kinetics (Nobel Symposium V), (A) pp 81–97 and (B) pp 261–316. Almquist and Wiksell, Stockholm

    Google Scholar 

  • Witt HT (1971) Coupling of quanta, electrons, field, ions, and phosphorylation in the functional membrane of photosynthesis. Results by pulse spectroscopic methods. Quart Rev Biophys 4: 365–477

    CAS  Google Scholar 

  • Witt HT (1979) Energy conversion in the functional membrane of photosynthesis. Analysis by light pulse and electric pulse methods. The central role of the electric field. Biochim Biophys Acta 505: 355–427

    CAS  PubMed  Google Scholar 

  • Witt HT (1996) Primary reactions of oxygenic photosynthesis. Ber Bunsenges Phys Chem 100: 1923–1942

    CAS  Google Scholar 

  • Witt HT (2004) Steps on the way to building blocks, topologies, crystals and X-ray structural analysis of Photosystem I and II of water-oxidizing photosynthesis. Photosynth Res 80: 85–107

    CAS  Google Scholar 

  • Witt K and Wolff Ch (1970) Rise time of the absorption changes of chlorophyll-aI, and carotenoids in photosynthesis. Z Naturforsch 25b:387

    Google Scholar 

  • Witt HT, Müller A and Rumberg B (1961) Oxidized cytochrome and chlorophyll in photosynthesis. Nature 192: 194–195

    Google Scholar 

  • Witt HT, Krauß N, Hinrichs W, Witt I, Fromme P and Saenger W (1992) Three-dimensional crystals of PS I from Synechococcus sp. and X-ray structure analysis at 6 Å resolution. In: Murata N (ed) Research in Photosynthesis, Vol I, pp 521–528. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Witt HT, Zouni A, Kern J, Fromme P, Krauß N, Saenger W and Orth P (2001) Crystal structure of Photosystem II and aspects of its function. In: PS2001: Proceedings of the 12th International Congress on Photosynthesis, PL-1, pp 1–8. CSIRO, Melbourne, (CD-ROM)

    Google Scholar 

  • Witt I, Witt HT, DiFiore D, Rögner M, Hinrichs W, Saenger W, Granzin J, Betzel CH and Dauter Z (1988) X-ray characterization of single crystals of the reaction center I of water-splitting photosynthesis. Ber Bunsenges Phys Chem 92: 1503–1506

    CAS  Google Scholar 

  • Wolff Ch, Buchwalrd HE, Rüppel H, Witt K and Witt HT (1969) Risetime of the light-induced electrical field across the functional membrane of photosynthesis. Z Naturforsch 24b:1038–1041

    Google Scholar 

  • Yachandra VK, Sauer K and Klein MP (1996) Manganese cluster in photosynthesis: Where plants oxidize water to dioxygen. Chem Rev 96: 2927–2950

    Article  CAS  PubMed  Google Scholar 

  • Zouni A, Jordan R, Schlodder E, Fromme P and Witt HT (2000) First Photosystem II crystals capable of water oxidation. Biochim Biophys Acta 1457:103–105

    CAS  PubMed  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauß N, Saenger W and Orth P (2001a) Crystal structure of Photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409: 739–743

    Article  CAS  PubMed  Google Scholar 

  • Zouni A, Kern J, Loll B, Fromme P, Witt HT, Orth P, Krauß N, Saenger W, Biesiadka J (2001b) Biochemical characterization and crystal structure of water oxidizing Photosystem II from Synechococcus elongatus. In: PS2001: Proceedings of the 12th International Congress on Photosynthesis, S5-003. CSIRO, Melbourne, (CD-ROM)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Witt, H.T. (2005). Photosystem II: Structural Elements, the First 3D Crystal Structure and Functional Implications. In: Wydrzynski, T.J., Satoh, K., Freeman, J.A. (eds) Photosystem II. Advances in Photosynthesis and Respiration, vol 22. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4254-X_20

Download citation

Publish with us

Policies and ethics