Skip to main content

Structural Analysis of the Photosystem II Core/Antenna Holocomplex by Electron Microscopy

  • Chapter
Photosystem II

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 22))

Summary

Electron microscopy has contributed greatly to the structural biology of Photosystem II (PS II) in higher plants and green algae from the level of its in vivo organization, within the thylakoid membrane, through to the determination of the structure of light-harvesting complex II (LHCII) at 3.4 Å. Freeze-fracture and freeze-etch techniques provided the first visualization of PS II and its antenna systems in vivo. Subsequently a range of PS II and PS II-antenna, super- and mega-complexes were purified from thylakoid membranes using mild detergent solubilization and these were structurally characterized by single particle analysis. In particular these studies showed the structural linkage between the PS II core and a range of bound macromolecular light-harvesting antennae, as well as the overall shape of the extrinsic oxygen-evolving complex. Electron crystallography extended the resolution range, revealing the positioning of PS II subunits and the transmembrane helix organization of both PS II and antenna proteins. This technique also identified many of the chlorin cofactors in the reaction center proteins of D1 and D2, and also in the inner antenna, CP47, and outer antenna of LHCII. Future work will involve obtaining more highly resolved structures of supercomplexes and megacomplexes, using electron cryo-microscopy and including structural information emerging from X-ray and electron crystallography, with the view to gaining a near atomic resolution model of higher plant/green algal PS II as it exists in the native thylakoid membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adir N (1999) Crystallization of the oxygen-evolving reaction centre of Photosystem II in nine different detergent mixtures. Acta Crystallogr D Biol Crystallogr 55 ( Pt 4): 891–894

    Article  PubMed  Google Scholar 

  • Adir N, Dobrovetsky Y and Lerner N (2001) Structure of c-phyco-cyanin from the thermophilic cyanobacterium Synechococcus vulcanus at 2.5 Å: Structural implications for thermal stability in phycobilisome assembly. J Mol Biol 313: 71–81

    Article  CAS  PubMed  Google Scholar 

  • Albertsson PA (1995) The structure and function of the chloroplast photosynthetic membrane — a model for the domain organization. Photosynth Res 46: 141–149

    Article  CAS  Google Scholar 

  • Albertsson PA, Yu SG and Larsson UK (1990) Heterogeneity in Photosystem II. Evidence from fluorescence and gel electrophoresis experiments. Biochim Biophys Acta 1016: 137–140

    CAS  Google Scholar 

  • Anderson JM and Melis A (1983) Localization of different photosystems in separate regions of chloroplast membranes. Proc Natl Acad Sci USA 80: 745–749

    CAS  Google Scholar 

  • Andersson B and Anderson JM (1980) Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim Biophys Acta 593: 427–440

    CAS  PubMed  Google Scholar 

  • Armond P, A. and Arntzen CJ (1977) Localization and characterization of PS II in grana and stroma lamellae. Plant Physiol 59: 398–404

    CAS  Google Scholar 

  • Auer M, Scarborough GA and Kühlbrandt W (1999) Surface crystallisation of the plasma membrane H+-ATPase on a carbon support film for electron crystallography. J Mol Biol 287: 961–968

    Article  CAS  PubMed  Google Scholar 

  • Barbato R, Friso G, Rigoni F, Dalla Vecchia F and Giacometti GM (1992) Structural changes and lateral redistribution of Photosystem II during donor side photoinhibition of thylakoids. J Cell Biol 119: 325–335

    Article  CAS  PubMed  Google Scholar 

  • Barber J (1980) An explanation for the relationship between salt-induced thylakoid stacking and the fluorescence changes associated with changes in spill-over energy from Photosystem II to Photosystem I. FEBS Lett 118: 1–10

    Article  CAS  Google Scholar 

  • Barber J (1982) Influence of surface charges on thylakoid structure and function. Ann Rev Plant Physiol 33: 261–295

    CAS  Google Scholar 

  • Barber J (2003) Photosystem II: the engine of life. Q Rev Biophys 36: 71–89

    CAS  PubMed  Google Scholar 

  • Barber J and Andersson B (1992) Too much of a good thing: Light can be bad for photosynthesis. Trends Biochem Sci 17: 61–66

    Article  CAS  PubMed  Google Scholar 

  • Barber J, Nield J, Morris EP, Zheleva D and Hankamer B (1997) The structure, function and dynamics of Photosystem two. Physiologia Plantarum 100: 817–827

    Article  CAS  Google Scholar 

  • Baumeister W, Grimm R and Walz J (1999) Electron tomography of molecules and cells. Trends Cell Biol 9: 81–85

    Article  CAS  PubMed  Google Scholar 

  • Bibby TS, Mary I, Nield J, Partensky F and Barber J (2003a) Low-light-adapted Prochlorococcus species possess specific antennae for each photosystem. Nature 424: 1051–1054

    Article  CAS  PubMed  Google Scholar 

  • Bibby TS, Nield J, Chen M, Larkum AW and Barber J (2003b) Structure of a Photosystem II supercomplex isolated from Prochloron didemni retaining its chlorophyll a/b light-harvesting system. Proc Natl Acad Sci USA 100: 9050–9054

    Article  CAS  PubMed  Google Scholar 

  • Boekema EJ, Hankamer B, Bald D, Kruip J, Nield J, Boonstra AF, Barber J and Rögner M (1995) Supramolecular structure of the Photosystem II complex from green plants and cyanobacteria. Proc Natl Acad Sci USA 92: 175–179

    CAS  PubMed  Google Scholar 

  • Boekema EJ, van Roon H, Calkoen F, Bassi R and Dekker JP (1999a) Multiple types of association of Photosystem II and its light-harvesting antenna in partially solubilized Photosystem II membranes. Biochemistry 38: 2233–2239

    Article  CAS  PubMed  Google Scholar 

  • Boekema EJ, Van Roon H, Van Breemen JF and Dekker JP (1999b) Supramolecular organization of Photosystem II and its light-harvesting antenna in partially solubilized Photosystem II membranes. Eur J Biochem 266: 444–452

    Article  CAS  PubMed  Google Scholar 

  • Boekema EJ, van Breemen JF, van Roon H and Dekker JP (2000a) Arrangement of Photosystem II supercomplexes in crystalline macrodomains within the thylakoid membrane of green plant chloroplasts. J Mol Biol 301: 1123–1133

    Article  CAS  PubMed  Google Scholar 

  • Boekema EJ, van Breemen JF, van Roon H and Dekker JP (2000b) Conformational changes in Photosystem II super-complexes upon removal of extrinsic subunits. Biochemistry 39: 12907–12915

    Article  CAS  PubMed  Google Scholar 

  • Böttcher B, Wynne SA and Crowther RA (1997) Determination of the fold of the core protein of hepatitis B virus by electron cryo-microscopy. Nature 386: 88–91

    Article  PubMed  Google Scholar 

  • Brejc K, Ficner R, Huber R and Steinbacher S (1995) Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 Å resolution. J Mol Biol 249: 424–440

    Article  CAS  PubMed  Google Scholar 

  • Büchel C, Morris E, Orlova E and Barber J (2001) Localisation of the PsbH subunit in Photosystem II: A new approach using labelling of His-tags with a Ni(2+)-NTA gold cluster and single particle analysis. J Mol Biol 312: 371–379

    Article  PubMed  Google Scholar 

  • Chen S, Roseman AM and Saibil HR (1998) Electron microscopy of chaperonins. Methods Enzymol 290: 242–253

    CAS  PubMed  Google Scholar 

  • Chiu W, McGough A, Sherman MB and Schmid MF (1999) High-resolution electron cryo-microscopy of macromolecular assemblies. Trends Cell Biol 9: 154–159

    Article  CAS  PubMed  Google Scholar 

  • da Fonseca P, Morris EP, Hankamer B and Barber J (2002) Electron crystallographic study of Photosystem II of the cyanobacterium Synechococcus elongatus. Biochemistry 41: 5163–5167

    Article  PubMed  Google Scholar 

  • De Las Rivas J, Balsera M and Barber J (2004) Evolution of oxygenic photosynthesis: Genome-wide analysis of the OEC extrinsic proteins. Trends Plant Sci 9: 18–25

    Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1984) X-ray structure analysis of a membrane protein complex. Electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180: 385–398

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Marko M, Buttle KF, Leith A, Mieczkowski M and Mannella CA (1999) Cubic membrane structure in amoeba (Chaos carolinensis) mitochondria determined by electron microscopic tomography. J Struct Biol 127: 231–239

    Article  CAS  PubMed  Google Scholar 

  • DeRosier DJ and Klug A (1968) Reconstruction of three dimensional structures from electron micrographs. Nature 217: 130–134

    Google Scholar 

  • Diner BA and Babcock GT (1996) Structure, Dynamics and Energy Conversion Efficiency in Photosystem II. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 213–247. Kluwer Academic, Dordrecht

    Google Scholar 

  • Dube P, Tavares P, Lurz R and van Heel M (1993) The portal protein of bacteriophage SPP1: A DNA pump with 13-fold symmetry. EMBO J 12: 1303–1309

    CAS  PubMed  Google Scholar 

  • Dubochet J, Adrian M, Chang JJ, Homo JC, Lepault J, McDowall AW and Schultz P (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21: 129–228

    CAS  PubMed  Google Scholar 

  • Ducret A, Muller SA, Goldie KN, Hefti A, Sidler WA, Zuber H and Engel A (1998) Reconstitution, characterisation and mass analysis of the pentacylindrical allophycocyanin core complex from the cyanobacterium Anabaena sp. PCC 7120. J Mol Biol 278: 369–388

    Article  CAS  PubMed  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S (2004) Architecture of the photosynthetic oxygen-evolving coneter. Science 303: 1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Fotinou C, Kokkinidis M, Fritzsch G, Haase W, Michel H and Ghanotakis DF (1993) Characterization of a Photosystem-II core and its 3-D crystals. Photosynth Res 37: 41–48

    Article  CAS  Google Scholar 

  • Frank J (1980) The role of correlation techniques in computer image processing. In: Hawkes PW, Computer Processing of Electron Microscope Images, 187–222. Springer, Berlin

    Google Scholar 

  • Fujiyoshi Y (1998) The structural study of membrane proteins by electron crystallography. Adv Biophys 35: 25–80

    CAS  PubMed  Google Scholar 

  • Green BR and Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Ann Rev Plant Physiol 47: 685–714

    CAS  Google Scholar 

  • Hankamer B, Barber J and Boekema EJ (1997a) Structure and Membrane Organization of Photosystem II From Green Plants. Annu Rev Plant Physiol Plant Molec Biol 48: 641–672

    CAS  Google Scholar 

  • Hankamer B, Nield J, Zheleva D, Boekema E, Jansson S and Barber J (1997b) Isolation and biochemical characterisation of monomeric and dimeric Photosystem II complexes from spinach and their relevance to the organisation of Photosystem II in vivo. Eur J Biochem 243: 422–429

    Article  CAS  PubMed  Google Scholar 

  • Hankamer B, Morris EP and Barber J (1999) Revealing the structure of the oxygen-evolving core dimer of Photosystem II by cryoelectron crystallography. Nat Struct Biol 6: 560–564

    Article  CAS  PubMed  Google Scholar 

  • Hankamer B, Morris E, Nield J, Carne A and Barber J (2001a) Subunit positioning and transmembrane helix organisation in the core dimer of Photosystem II. FEBS Lett 504: 142–151

    Article  CAS  PubMed  Google Scholar 

  • Hankamer B, Morris E, Nield J, Gerle C and Barber J (2001b) Three-dimensional structure of the Photosystem II core dimer of higher plants determined by electron microscopy. J Struct Biol 135: 262–269

    Article  CAS  PubMed  Google Scholar 

  • Harauz G, Boekema E and van Heel M (1988) Statistical image analysis of electron micrographs of ribosomal subunits. Methods Enzymol 164: 35–49

    CAS  PubMed  Google Scholar 

  • Harrer R (2003) Associations between light-harvesting complexes and Photosystem II from Marchantia polymorpha L. determined by two-and three-dimensional electron microscopy. Photosynth Res 75: 249–258

    Article  CAS  PubMed  Google Scholar 

  • Hasler L, Heymann JB, Engel A, Kistler J and Walz T (1998) 2D crystallization of membrane proteins: Rationales and examples. J Struct Biol 121: 162–171

    Article  CAS  PubMed  Google Scholar 

  • Henderson R (1995) The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q Rev Biophys 28: 171–193

    CAS  PubMed  Google Scholar 

  • Henderson R (2004) Realizing the potential of electron cryo-microscopy. Q Rev Biophys 33: 3–13

    Google Scholar 

  • Henderson R, Baldwin JM, Downing KH, Lepault J and Zemlin F (1986) Structure of the purple membrane from Halobacterium halobium — recording, measurement and evaluation of electron micrographs at 3.5 Å resolution. Ultramicroscopy 19: 147–178

    Article  CAS  Google Scholar 

  • Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E and Downing KH (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 213: 899–929

    CAS  PubMed  Google Scholar 

  • Henrysson T and Sundby C (1990) Characterisation of Photosystem II in stroma thylakoid membranes. Photosynth Res 25

    Google Scholar 

  • Hoenger A and Aebi U (1996) 3-D Reconstructions from ice-embedded and negatively stained biomacromolecular assemblies: A critical comparison. J Struct Biol 117: 99–116

    Article  Google Scholar 

  • Irrgang KD, Shi LX, Funk C and Schroder WP (1995) A nuclear-encoded subunit of the Photosystem II reaction center. J Biol Chem 270: 17588–17593

    CAS  PubMed  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauss N (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5 Å resolution. Nature 411: 909–917

    Article  CAS  PubMed  Google Scholar 

  • Kamiya N and Shen JR (2003) Crystal structure of oxygen-evolving Photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution. Proc Natl Acad Sci USA 100: 98–103

    Article  CAS  PubMed  Google Scholar 

  • Kargul J, Nield J and Barber J (2003) Three-dimensional reconstruction of a light-harvesting complex I-Photosystem I (LHCI-PS I) supercomplex from the green alga Chlamydomonas reinhardtii. J Biol Chem 278: 16135–16141

    Article  CAS  PubMed  Google Scholar 

  • Kiselev NA, Sherman MB and Tsuprun VL (1990) Negative staining of proteins. Electron Microsc Rev 3: 43–72

    CAS  PubMed  Google Scholar 

  • Kruse O (2001) Light-induced short-term adaptation mechanisms under redox control in the PS II-LHCII supercomplex: LHCII state transitions and PS II repair cycle. Naturwissenschaften 88: 284–292

    Article  CAS  PubMed  Google Scholar 

  • Kühlbrandt W (1992) Two-dimensional crystallization of membrane proteins. Q Rev Biophys 25: 1–49

    PubMed  Google Scholar 

  • Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621

    Article  PubMed  Google Scholar 

  • Kunji ER, von Gronau S, Oesterhelt D and Henderson R (2000) The three-dimensional structure of halorhodopsin to 5 Å by electron crystallography: A new unbending procedure for two-dimensional crystals by using a global reference structure. Proc Natl Acad Sci USA 97: 4637–4642

    Article  CAS  PubMed  Google Scholar 

  • Lam E, Baltimore B, Ortiz W, Chollar S, Melis A and Malkin R (1983) Characterization of a resolved oxygen-evolving photosystem-II preparation from spinach thylakoids. Biochim Biophys Acta 724: 201–211

    CAS  Google Scholar 

  • Lebeau L, Lach F, Venien-Bryan C, Renault A, Dietrich J, Jahn T, Palmgren MG, Kühlbrandt W and Mioskowski C (2001) Two-dimensional crystallization of a membrane protein on a detergent-resistant lipid monolayer. J Mol Biol 308: 639–647

    Article  CAS  PubMed  Google Scholar 

  • Levy D, Mosser G, Lambert O, Moeck GS, Bald D and Rigaud JL (1999) Two-dimensional crystallization on lipid layer: A successful approach for membrane proteins. J Struct Biol 127: 44–52

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang TY, Zhang J, Gul L, An X and Chang WR(2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428: 728–292

    Article  Google Scholar 

  • Mannella CA, Buttle K, Rath BK and Marko M (1998) Electron microscopic tomography of rat-liver mitochondria and their interaction with the endoplasmic reticulum. Biofactors 8: 225–228

    CAS  PubMed  Google Scholar 

  • Matadeen R, Patwardhan A, Gowen B, Orlova EV, Pape T, Cuff M, Mueller F, Brimacombe R and van Heel M (1999) The Escherichia coli large ribosomal subunit at 7.5 Å resolution. Structure Fold Des 7: 1575–1583

    CAS  PubMed  Google Scholar 

  • Miller K, R. (1981) Freeze-etching studies of photosynthetic membranes. In: Griffith JD (ed) Electron Microscopy in Biology, Vol 1, pp 1–30. Wiley-Interscience, New York

    Google Scholar 

  • Miller KR, Miller GJ and Mclntyre KR (1976) The light-harvesting chlorophyll-protein complex of Photosystem II. Its location in the photosynthetic membrane. J Cell Biol 71: 624–638

    CAS  PubMed  Google Scholar 

  • Miller KR and Cushman RA (1978) A chloroplast membrane lacking Photosystem II. Biochim Biophys Acta 546: 481–499

    Google Scholar 

  • Mitsuoka K, Hirai T, Murata K, Miyazawa A, Kidera A, Kimura Y and Fujiyoshi Y (1999) The structure of bacteriorhodopsin at 3.0 Å resolution based on electron crystallography: Implication of the charge distribution. J Mol Biol 286: 861–882

    Article  CAS  PubMed  Google Scholar 

  • Miyazawa A, Fujiyoshi Y, Stowell M and Unwin N (1999) Nicotinic acetylcholine receptor at 4.6 Å resolution: Transverse tunnels in the channel wall. J Mol Biol 288: 765–786

    Article  CAS  PubMed  Google Scholar 

  • Miyazawa A, Fujiyoshi Y and Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 424: 949–955

    Google Scholar 

  • Morris EP, Hankamer B, Zheleva D, Friso G and Barber J (1997) The three-dimensional structure of a Photosystem II core complex determined by electron crystallography. Structure 5: 837–849

    Article  CAS  PubMed  Google Scholar 

  • Morschel EF and Schatz GH (1987) Correlation of Photosystem II complexes with exoplasmic freeze-fracture particles of cyanobacterium Synechococcus sp. Planta 172: 145–154

    Google Scholar 

  • Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A and Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407: 599–605

    CAS  PubMed  Google Scholar 

  • Nicastro D, Frangakis AS, Typke D and Baumeister W (2000) Cryo-electron tomography of neurospora mitochondria. J Struct Biol 129: 48–56

    Article  CAS  PubMed  Google Scholar 

  • Nield J, Funk C and Barber J (2000a) Supermolecular structure of Photosystem II and location of the PsbS protein. Philos Trans R Soc Lond B Biol Sci 355: 1337–1344

    CAS  PubMed  Google Scholar 

  • Nield J, Kruse O, Ruprecht J, da Fonseca P, Büchel C and Barber J (2000b) Three-dimensional structure of Chlamydomonas reinhardtii and Synechococcus elongatus Photosystem II complexes allows for comparison of their oxygen-evolving complex organization. J Biol Chem 275: 27940–27946

    CAS  PubMed  Google Scholar 

  • Nield J, Orlova EV, Morris EP, Gowen B, van Heel M and Barber J (2000c) 3D map of the plant Photosystem II supercomplex obtained by cryoelectron microscopy and single particle analysis. Nat Struct Biol 7: 44–47

    CAS  PubMed  Google Scholar 

  • Nield J, Balsera M, De Las Rivas J and Barber J (2002) Three-dimensional electron cryo-microscopy study of the extrinsic domains of the oxygen-evolving complex of spinach: Assignment of the PsbO protein. J Biol Chem 277: 15006–15012

    Article  CAS  PubMed  Google Scholar 

  • Nield J, Rizkallah PJ, Barber J and Chayen NE (2003) The 1.45A three-dimensional structure of C-phycocyanin from the thermophilic cyanobacterium Synechococcus elongatus. J Struct Biol 141: 149–155

    Article  CAS  PubMed  Google Scholar 

  • Nogales E, Wolf SG and Downing KH (1998) Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391: 199–203

    Article  CAS  PubMed  Google Scholar 

  • Olive J and Vallon O (1991) Structural organization of the thylakoid membrane: Freeze-fracture and immunocytochemical analysis. J Electron Microsc Tech 18: 360–374

    Article  CAS  PubMed  Google Scholar 

  • Orlova EV (2000) Structural analysis of non-crystalline macro-molecules: The ribosome. Acta Crystallogr D Biol Crystallogr 56 (Pt 10): 1253–1258

    Article  PubMed  Google Scholar 

  • Orlova EV, Dube P, Harris JR, Beckman E, Zemlin F, Markl J and van Heel M (1997) Structure of keyhole limpet hemocyanin type 1 (KLH1) at 15 Å resolution by electron cryo-microscopy and angular reconstitution. J Mol Biol 271: 417–437

    CAS  PubMed  Google Scholar 

  • Perkins G, Renken C, Martone ME, Young SJ, Ellisman M and Frey T (1997) Electron tomography of neuronal mitochondria: Three-dimensional structure and organization of cristae and membrane contacts. J Struct Biol 119: 260–272

    Article  CAS  PubMed  Google Scholar 

  • Perkins GA, Song JY, Tarsa L, Deerinck TJ, Ellisman MH and Frey TG (1998) Electron tomography of mitochondria from brown adipocytes reveals crista junctions. J Bioenerg Biomembr 30: 431–442

    Article  CAS  PubMed  Google Scholar 

  • Radermacher M (1988) Three-dimensional reconstruction of single particles from random and nonrandom tilt series. J Electron Microsc Tech 9: 359–394

    Article  CAS  PubMed  Google Scholar 

  • Reimer L (1997) Transmission Electron Microscopy: Physics of Image Formation and Microanalysis, Fourth edition. Springer Series in Optical Sciences, Vol 36. Springer, Berlin

    Google Scholar 

  • Rhee KH (2001) Photosystem II: The solid structural era. Annu Rev Biophys Biomol Struct 30: 307–328

    Article  CAS  PubMed  Google Scholar 

  • Rhee KH, Morris EP, Barber J and Kühlbrandt W (1998) Three-dimensional structure of the plant Photosystem II reaction centre at 8 Å resolution. Nature 396: 283–286

    CAS  PubMed  Google Scholar 

  • Ruprecht J and Nield J (2001) Determining the structure of biological macromolecules by transmission electron microscopy, single particle analysis and 3D reconstruction. Prog Biophys Mol Biol 75: 121–164

    CAS  PubMed  Google Scholar 

  • Saibil HR (2000a) Macromolecular structure determination by cryo-electron microscopy. Acta Crystallogr D Biol Crystallogr 56 (Pt 10): 1215–1222

    Article  PubMed  Google Scholar 

  • Saibil HR (2000b) Conformational changes studied by cryo-electron microscopy. Nat Struct Biol 7: 711–714

    CAS  PubMed  Google Scholar 

  • Schatz M, Orlova EV, Dube P, Jager J and van Heel M (1995) Structure of Lumbricus terrestris hemoglobin at 30 Å resolution determined using angular reconstitution. J Struct Biol 114: 28–40

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Krey I, Mitsuoka K, Hirai T, Murata K, Cheng Y, Fujiyoshi Y, Morgenstern R and Hebert H (2000) The three-dimensional map of microsomal glutathione transferase 1 at 6 A resolution. EMBO J 19: 6311–6316

    Article  CAS  PubMed  Google Scholar 

  • Seibert M, DeWit M and Staehelin LA (1987) Structural localization of the O2-evolving apparatus to multimeric (tetrameric) particles on the lumenal surface of freeze-etched photosynthetic membranes. J Cell Biol 105: 2257–2265

    Article  CAS  PubMed  Google Scholar 

  • Sherman MB, Soejima T, Chiu W and van Heel M (1998) Multi-variate analysis of single unit cells in electron crystallography. Ultramicroscopy 74: 179–199

    Article  CAS  PubMed  Google Scholar 

  • Shi LX, Kim SJ, Marchant A, Robinson C and Schroder WP (1999) Characterisation of the PsbX protein from Photosystem II and light regulation of its gene expression in higher plants. Plant Mol Biol 40: 737–744

    Article  CAS  PubMed  Google Scholar 

  • Simpson DJ (1978) Freeze-fracture studies on barley plastid membranes II. Wild-type chloroplast. Carlsberg Res Commun 43: 365–389

    Google Scholar 

  • Simpson DJ (1979) Freeze-fracture studies on barley plastid membranes. III. Location of the light harvesting chlorophyll-protein. Carlsberg Res Commun 44: 305–336

    CAS  Google Scholar 

  • Simpson DJ, Lindberg Moller B and Hoyer-Hansen G (1978) Freeze-fracture structure and polypeptide composition of thylakoids of wild type and mutant barley plastids. In: Akoyunoglou G ed) Chloroplast Development, pp 507–512. Elsevier/North-Holland Biomedical Press, Amsterdam

    Google Scholar 

  • Staehelin LA (1976) Reversible particle movements associated with unstacking and restacking of chloroplast membranes in vitro. J Cell Biol 71: 136–158

    Article  CAS  PubMed  Google Scholar 

  • Staehelin LA (1986) Chloroplast structure and supramolecular organization of photosynthetic membranes. In: Staehelin LA (ed) Photosynthesis III, Photosynthetic Membranes and Light Harvesting Systems, pp 1–84. Springer, Berlin

    Google Scholar 

  • Stahlberg H, Braun T, de Groot B, Philippsen A, Borgnia MJ, Agre P, Kühlbrandt W and Engel A (2000) The 6.9-Å structure of GlpF: A basis for homology modeling of the glycerol channel from Escherichia coli. J Struct Biol 132: 133–141

    Article  CAS  PubMed  Google Scholar 

  • Stowell MH, Miyazawa A and Unwin N (1998) Macromolecular structure determination by electron microscopy: New advances and recent results. Curr Opin Struct Biol 8: 595–600

    Article  CAS  PubMed  Google Scholar 

  • Swiatek M, Kuras R, Sokolenko A, Higgs D, Olive J, Cinque G, Muller B, Eichacker LA, Stern DB, Bassi R, Herrmann RG and Wollman FA (2001) The chloroplast gene ycf9 encodes a Photosystem II (PS II) core subunit, PsbZ, that participates in PS II supramolecular architecture. Plant Cell 13: 1347–1367

    Article  CAS  PubMed  Google Scholar 

  • Tomo T, Enami I and Satoh K (1993) Orientation and nearest neighbor analysis of psbI gene product in the Photosystem II reaction center complex using bifunctional cross-linkers. FEBS Lett 323: 15–18

    Article  CAS  PubMed  Google Scholar 

  • Tsvetkova NM, Apostolova EL, Brain APR, Williams WP and Quinn PJ (1995) Factors influencing PS II particle array formation in Arabidopsis thaliana chloroplasts and the relationship of such arrays to the thermostability of PS II. Biochim Biophys Acta 1228: 201–210

    Google Scholar 

  • van Heel M (1986) Resolution criteria for three dimensional reconstruction. Optik 73: 119–122

    Google Scholar 

  • van Heel M and Stoffler-Meilicke M (1985) Characteristic views of E. coli and B. stearothermophilus 30S ribosomal subunits in the electron microscope. EMBO J 4: 2389–2395

    PubMed  Google Scholar 

  • van Heel M (1987) Angular reconstitution: A posteriori assignment of projection directions for 3D reconstruction. Ultramicroscopy 21: 111–124

    PubMed  Google Scholar 

  • van Heel M, Schatz M and Orlova E (1992) Correlation functions revisited. Ultramicroscopy 46: 307–316

    Google Scholar 

  • van Heel M, Gowen B, Matadeen R, Orlova EV, Finn R, Pape T, Cohen D, Stark H, Schmidt R, Schatz M and Patwardhan A (2000) Single-particle electron cryo-microscopy: Towards atomic resolution. Q Rev Biophys 33: 307–369

    PubMed  Google Scholar 

  • Vonck J (2000) Parameters affecting specimen flatness of two-dimensional crystals for electron crystallography. Ultramicroscopy 85: 123–129

    Article  CAS  PubMed  Google Scholar 

  • Webber AN, Packman LC, Chapman DJ, Barber J and Gray JC (1989) The 5th chloroplast-encoded polypeptide is present in the photosystem-II reaction center complex. FEBS Lett 242: 259–262

    CAS  Google Scholar 

  • Williams KA (2000) Three-dimensional structure of the ion-coupled transport protein NhaA. Nature 403: 112–115

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Rice WJ, He W and Stokes DL (2002) A structural model for the catalytic cycle of Ca(2+)-ATPase. J Mol Biol 316: 201–211

    CAS  PubMed  Google Scholar 

  • Zhang L and Aro E (2002) Synthesis, membrane insertion and assembly of the chloroplast-encoded polypeptide is present in the photosystem-II reaction center complex. FEBS Lett 512: 13–18

    Article  CAS  PubMed  Google Scholar 

  • Zheleva D, Sharma J, Panico M, Morris HR and Barber J (1998) Isolation and characterization of monomeric and dimeric CP47-reaction center Photosystem II complexes. J Biol Chem 273: 16122–16127

    Article  CAS  PubMed  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W and Orth P (2001) Crystal structure of Photosystem II from Synechococcus elongatus at 3.8 Ångstrom resolution. Nature 739–743

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hankamer, B., Barber, J., Nield, J. (2005). Structural Analysis of the Photosystem II Core/Antenna Holocomplex by Electron Microscopy. In: Wydrzynski, T.J., Satoh, K., Freeman, J.A. (eds) Photosystem II. Advances in Photosynthesis and Respiration, vol 22. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4254-X_19

Download citation

Publish with us

Policies and ethics