Skip to main content

Rotating Thin-Walled Anisotropic Beams

  • Chapter
Thin-Walled Composite Beams

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 131))

  • 1725 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aboudi, J., Pindera, M. and Arnold, S. M. (1996) “Thermoelastic Theory for the Response of Materials Functionally Graded in Two Directions,” International Journal of Solids and Structures, Vol. 33, No. 7, pp. 931–966.

    Article  Google Scholar 

  • Aboudi, J., Pindera, M. J. and Arnold, S. M. (1999) “Higher-Order Theory for Functionally Graded Materials,” Composites: Part B, 30, pp. 777–832.

    Article  Google Scholar 

  • Ambartsumian, S. A., Bagdasarian, G. E. Durgarian, S. M. and Gnuny, V. T. (1966) “Some Problems of Vibration and Stability of Shells and Plates,” International Journal of Solids and Structures, Vol. 2, pp. 59–81.

    Article  Google Scholar 

  • Anderson, G. L. (1975) “On the Extensional and Flexural Vibrations of Rotating Bars,” International Journal of Nonlinear Mechanics, Vol. 10, pp. 223–236.

    MATH  Google Scholar 

  • Balhaddad, A. S. and Onipede, D. Jr. (1998) “Three-Dimensional Free Vibration of Pretwisted Beams,” AIAA Journal, Vol. 36, No. 8, pp. 1524–1528.

    Google Scholar 

  • Banerjee, J. R. (2001), “Free Vibration Analysis of a Twisted Beam Using the Dynamic Stiffness Method,” International Journal of Solids and Structures, Vol. 38, pp. 6703–6722.

    MATH  Google Scholar 

  • Bauchau, O. A. (1985) “A Beam Theory for Anisotropic Materials,” Journal of Applied Mechanics, Trans. ASME, Vol. 52, pp. 416–422.

    MATH  Google Scholar 

  • Bauchau, O. A., Loewy, R. G. and Bryan, P. S. (1986) “Approach to Ideal Twist Distribution in Tilt Rotor VTOL Blade Designs,” RTC Report No. D-86-2, Rensselaer Polytechnic Institute, Troy, NY July.

    Google Scholar 

  • Bauchau, O. A. and Hong, C. H. (1987) “Large Displacement Analysis of Naturally Curved and Twisted Composite Beams,” AIAA Journal Vol. 25, No. 10, pp. 1469–1475.

    Google Scholar 

  • Bazoune, A., Khulief, Y. A. and Stephen, N. G. (1999) “Further Results for Modal Characteristics of Rotating Tapered Timoshenko Beams,” Journal of Sound and Vibration, Vol. 219, 1, pp. 157–174.

    Article  Google Scholar 

  • Berezovski, A., Engelbrecht, J. and Maugin, G. A. (2003) “Numerical Simulation of Two-Dimensional Ware Propagation in Functionally Graded Materials,European Journal of Mechanics A/Solids, 22, pp. 257–265.

    MathSciNet  Google Scholar 

  • Bhat, R. B. (1986) “Transverse Vibrations of a Rotating Uniform Cantilever with Tip Mass as Predicted by Using Beam Characteristics Orthogonal Polynomials in the Rayleigh-Ritz Method,” Journal of Sound and Vibration, Vol. 105, No. 2, pp. 199–210.

    Article  MathSciNet  Google Scholar 

  • Bhuta, P. G. and Jones, J. P. (1965) “On Axial Vibrations of a Whirling Bar,” Journal of the Acoustical Society of America, Vol. 35, No. 2, February, pp. 217–221.

    MathSciNet  Google Scholar 

  • Bielawa, R. L. (1992) Rotary Wing Structural Dynamics and Aeroelasticity, AIAA Education Series, AIAA, Inc., Washington, D.C.

    Google Scholar 

  • Birman, V. (1995) “Buckling of Functionally Graded Hybrid Composite Plates,” Proceedings of the 10th Conference on Engineering Mechanics, Vol. 2, Boulder, CO, pp. 1199–1202.

    Google Scholar 

  • Boyce, W. E. (1956) “Effect of Hub Radius on the Vibration of a Uniform Bar,” Journal of Applied Mechanics, Trans. ASME, Vol. 23, pp. 287–290.

    MATH  Google Scholar 

  • Boyce, W. E. and Handelman, G. H. (1961) “Vibration of Rotating Beams with Tip Mass,” Zeitschrift für Agew. Math. and Physik, XII, 5, 369–392.

    MathSciNet  Google Scholar 

  • Büter, A. and Breitbach E. (2000) “Adaptive Blade Twist-Calculations and Numerical Results,” Aerospace Science and Technology, 4, pp. 309–319.

    Google Scholar 

  • Carnegie, W. (1959) “Vibrations of Pre-twisted Cantilever Blading,” Proc. Inst. Mech. Engrs. London, Vol. 173, pp. 343–362.

    Google Scholar 

  • Carnegie, W. and Thomas, J. (1972) “The Effects of Shear Deformation and Rotary Inertia on the Lateral Frequencies of Cantilever Beams in Bending,” Journal of Engineering for Industry, Trans. ASME, Vol. 94, pp. 267–278.

    Google Scholar 

  • Cesnik, C. E. S. and Shin, S. J. (2001a) “On the Twist Performance of a Multiple-Cell Active Helicopter Blade,” Smart Materials and Structures, Vol. 10, pp. 53–61.

    Google Scholar 

  • Cesnik, C. E. S. and Shin, S. J. (2001b) “On The Modeling of Integrally Activated Helicopter Blades,” International Journal of Solids and Structures, Vol. 38, pp. 1765–1789.

    Article  Google Scholar 

  • Chandra, R. and Chopra, I. (1992) “Experimental-Theoretical Investigation of the Vibration Characteristics of Rotating Composite Box Beams,” Journal of Aircraft, Vol. 29, No. 4, pp. 657–664.

    Google Scholar 

  • Chandiramani, N. K., Librescu, L. and Shete, C. D. (2002) “On The Free-Vibration of Rotating Composite Beams Using a Higher-Order Transverse Shear Formulation,” Aerospace Science and Technology, Vol. 6, pp. 545–561.

    Article  Google Scholar 

  • Chandiramani, N. K. and Librescu, L. (2002) “Optimal Vibration Control of a Rotating Shearable Blade Using Distributed Piezoelectric Sensing and Actuation,” Smart Structures and Materials; Modeling Signal Processing and Control, (V. S. Rao Ed.) Proceedings of SPIE, Vol. 4693, SPIE, pp. 451–460.

    Google Scholar 

  • Chandiramani, N.K., Shete, C. D. and Librescu, L. (2003a) “Vibration of Higher-Order Shearable Pretwisted Rotating Composite Blades,” International Journal of Mechanical Sciences, Vol. 45, pp. 2017–2041.

    Article  Google Scholar 

  • Chandiramani, N. K., Shete, C. D. and Librescu, L. (2003b) “Optimal Control of Pretwisted Shearable Smart Composite Rotor Blades,” AIAA-2003-1540, 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, Norfolk, VA, April 7–10.

    Google Scholar 

  • Chandiramani, N.K., Librescu, L., Saxena, V. and Kumar, A. (2004) “Optimal Vibration Control of a Rotating Composite Beam with Distributed Piezoelectric Sensing and Actuations,” Smart Materials and Structures, Vol. 13, pp. 433–442.

    Article  Google Scholar 

  • Chelu, P. and Librescu, L. (2005) “Dynamic Response of Spinning Thin-Walled Composite Booms Exposed to Solar Radiation Using Wavelet-Galerkin Method,” Proceedings of the Sixth International Congress on Thermal Stresses, TS 2005, Vienna University of Technology, F. Ziegler, R. Heuer and C. Adam (Eds), Vol. 2, pp. 459–462, TU Wien, May 2005.

    Google Scholar 

  • Cheng, Z.-W. and Batra, R. C. (2000) “Three-Dimensional Thermoelastic Deformation of a Functionally Graded Elliptic Plate,” Composites, Part B, Vol. 31, pp. 97–100.

    Article  Google Scholar 

  • Chopra, I. (2000) “Status of Application of Smart Structures Technology to Rotorcraft Systems,” Journal of the American Helicopter Society, Vol. 45, No. 4, pp. 228–252.

    Google Scholar 

  • Coyle, T. and Harris, W. R. (1960) “The Effects of Blast Against Rotor Blades,” (V) BRL, Technical Note No. 1342, Sept. 1960, AD 370885.

    Google Scholar 

  • Dawson, B. (1968), “Coupled Bending-Bending Vibrations of Pretwisted Cantilever Blading Treated by Rayleigh-Ritz Energy Method,” Journal of Mechanical Engineering Science, Vol. 10, No. 5, pp. 381–388.

    Google Scholar 

  • Dokumaci, E., Thomas, J. and Carnegie, W. (1967) “Matrix Displacement Analysis of Coupled Bending-Bending Vibration of Pretwisted Blading,” Journal of Mechanical Engineering Science, Vol. 9, No. 4, pp. 247–254.

    Google Scholar 

  • Du, H., Lim, M. K. and Liew, K.M. (1994) “A Power Series Solution for Vibration of a Rotating Timoshenko Beam,” Journal of Sound and Vibration, Vol. 175, No. 4, pp. 505–523.

    Article  Google Scholar 

  • Eick, C. D. and Mignolet, M. P. (1995, 1996) “Vibration and Buckling of Flexible Rotating Beams,” AIAA Journal, Vol. 33, No. 3, March. pp. 528–538, and AIAA Journal, Vol. 34, No. 3, pp. 641–643.

    Google Scholar 

  • Ewins, D. J. and Henry, R. (1992) “Structural Dynamic Characteristics of Individual Blades,” Vibration and Rotor Dynamics, von Kármán Institute for Fluid Dynamics, Lecture Series 1992-06, September, pp. 14.1–14.27.

    Google Scholar 

  • Fauconneau, G. and Marangoni, R. D. (1970) “Effect of a Thermal Gradient on the Natural Frequencies of a Rectangular Plate,” International Journal Mechanical Sciences, Vol. 12, pp. 113–122.

    Google Scholar 

  • Flax, A. H. (1996) “Comments on Vibration and Buckling of Flexible Rotating Beams,” AIAA Journal, Vol. 34, No. 3, March. pp. 640–641.

    Google Scholar 

  • Friedmann, P. (1977) “Recent Developments in Rotaway-Wing Aeroelasticity,” Journal of Aircraft, Vol. 14, No. 11, pp. 1027–1041.

    Google Scholar 

  • Friedmann, P. (1983) “Formulation and Solution of Rotary-Wing Aeroelastic Stability and Response Problems,” Vertica, Vol. 7, No. 2, pp. 101–141.

    Google Scholar 

  • Gern, F. H. and Librescu, L. (1998) “Effects of Externally Mounted Stores on Flutter Characteristics of Advanced Swept Cantilevered Aircraft Wings,” Aerospace Science and Technology, Vol. 2, No. 5, pp. 321–333.

    Article  Google Scholar 

  • Gern, F. H. and Librescu, L. (1999) “Aeroelatic Tailoring of Advanced Aircraft Wings Carrying External Stores,” Atti della Accademia delle Scienze di Torino, Classe di Scienze Fisiche, Mathematiche’s Naturali, Quaderni, 1, pp. 201–219, (Issue devoted to Placido Cicala).

    Google Scholar 

  • Gern, F. H. and Librescu, L. (2000) “Aeroelastic Tailoring of Composite Wings Exhibiting Nonclassical Effects and Carrying External Stores,” Journal of Aircraft, Vol. 37, No. 6, pp. 1097–1004.

    Google Scholar 

  • Gern, F. H. and Librescu, L. (2001) “Static and Dynamic Aeroelasticity of Advanced Aircraft Wings Carrying Exernal Stores,” AIAA Journal, Vol. 36, No. 7, pp. 1121–1129.

    Google Scholar 

  • Giurgiutiu, V. and Stafford, R. O. (1977) “Semi-Analytic Methods for Frequencies and Mode Shapes of Rotor Blades,” Vertica, Vol. 1, pp. 291–306.

    Google Scholar 

  • Gong, S.W., Lam, K. Y. and Reddy, J. N. (1999) “The Elastic Response of Functionally Graded Cylindrical Shells to Low-Velocity Impact,” International Journal of Impact Engineering, Vol. 22, No. 4, pp. 397–417.

    Article  Google Scholar 

  • Hilton, H. H. (2005) “Optimum Linear and Nonlinear Viscoelastic Functionally Graded Materials-Characterizations and Analysis,” Composites Part A: Manufacturing and Applied Sciences, (in press).

    Google Scholar 

  • Hoa, S.V. (1979) “Vibration of a Rotating Beam with Tip Mass,” Journal of Sound and Vibration, Vol. 67, No. 2, pp. 369–381.

    MATH  Google Scholar 

  • Hodges, D. H. (1977) “On the Extensional Vibrations of Rotating Bars,” International Journal of Nonlinear Mechanics, Vol. 12, pp. 293–296.

    MATH  Google Scholar 

  • Hodges, D. H. (1980), “Torsion of Pretwisted Beams Due to Axial Loading,” ASME Journal of Applied Mechanics, Vol. 47, pp. 393–397.

    MATH  Google Scholar 

  • Hodges, D. H. (1981) “An Approximate Formula for the Fundamental Frequency of a Uniform Rotating Beam Clamped off the Axis of Rotation,” Journal of Sound and Vibration, Vol. 77, No. 1, pp. 11–18.

    MATH  Google Scholar 

  • Hodges, D. H. and Ormiston, R. A. (1976) “Stability of Elastic Bending and Torsion of Uniform Cantilever Rotor Blades in Hover with Variable Structural Coupling”, NASA TND-8192, April.

    Google Scholar 

  • Hodges, D. H., Rutkowski, M. J. (1981), “Free-Vibration Analysis of Rotating Beams by a Variable-Order Finite Element Method,” AIAA Journal, Vol. 19, No. 11, pp. 1459–1466.

    Google Scholar 

  • Hodges, D. H. (1990) “Review of Composite Rotor Blade Modeling,” AIAA Journal, Vol. 28, No. 3, pp. 561–565.

    Google Scholar 

  • Hong, C. H. and Chopra, I. (1985) “Aeroelastic Stability of a Composite Rotor Blade,” Journal of American Helicopter Society, Vol. 30, No. 2, pp. 57–67.

    Google Scholar 

  • Houbolt, J.C. and Brooks, G. W. (1958) “Differential Equations of Motion for Combined Flapwise Bending, Chordwise Bending, and Torsion of Twisted Nonuniform Rotor Blades,”NACA TR 1346.

    Google Scholar 

  • Isakson, G. and Eisley, J.G. (1960) “Natural Frequencies in Bending of Twisted Rotating Blades,” NASA TN D-371.

    Google Scholar 

  • Johnson, W. (1980) Helicopter Theory, Princeton University Press.

    Google Scholar 

  • Jung, S. N., Nagaraj, V. T. and Chopra, I. (1999) “Assessment of Composite Rotor Blade: Modeling Techniques,” Journal of the American Helicopter Society, Vol. 44, No. 3, pp. 188–205.

    Google Scholar 

  • Jung, S. N., Nagaraj, V. T. and Chopra, I. (2001) “Refined Structural Dynamics Model for Composite Rotor Blades,” AIAA Journal, Vol. 39, No. 2, pp. 339–348.

    Google Scholar 

  • Karpouzian G. and Librescu, L. (1994) “A Comprehensive Model of Anisotropic Composite Aircraft Wings and Its Use in Aeroelastic Analyses,” Journal of Aircraft, May–June, Vol. 31, No. 3, pp. 702–712.

    Google Scholar 

  • Karpouzian G. and Librescu, L. (1995) “Exact Flutter Solution of Advanced Composite Swept Wings in Various Flight Speed Regimes,” AIAA Paper 95-1382, Proceedings of the 36th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, New Orleans, LA, April 10–12.

    Google Scholar 

  • Karpouzian, G. and Librescu, L. (1996) “Non-Classical Effects on Divergence and Flutter of Anisotropic Swept Aircraft Wings,” AIAA Journal, Vol. 34, No. 4, April, pp. 786–794.

    Google Scholar 

  • Kaza, K. B. and Kielb, R. E. (1984) “Effects of Warping and Pretwist on Torsional Vibration of Rotating Beams,” Journal of Applied Mechanics, Trans. ASME, Vol. 51, Dec., pp. 913–920.

    Google Scholar 

  • Khulief, Y. A. and Bazoune, A. (1992) “Frequencies of Rotating Tapered Timoshenko Beams with Different Boundary Conditions,” Computers & Structures, Vol. 42, No. 5, pp. 781–795.

    Article  Google Scholar 

  • Kosmatka, J. B. (1992) “Extension-Bend-Twist Coupling Behavior of Nonhomogeneous Anisotropic Beams with Initial Twist,” AIAA Journal, Vol. 30, No. 2, pp. 519–527.

    MATH  Google Scholar 

  • Krenk, S. (1984) “A Linear Theory for Pretwisted Elastic Beams,” ASME Trans., Journal of Applied Mechanics, Vol. 50, pp. 137–142.

    Google Scholar 

  • Kumar R. (1974) “Vibration of Space Booms Under Centrifugal Force Field,” Canadian Aeronautics and Space Institute (CASI) Trans. Vol. 7, pp. 1–5.

    Google Scholar 

  • Kunz, D. L. (1994), “Survey and Comparison of Engineering Beam Theories for Helicopter Rotor Blades,” Journal of Aircraft, Vol. 31, No. 3, pp. 473–479.

    Google Scholar 

  • Kvaternik, R. G., White, W. F. Jr. and Kaza, K. R.V. (1978) “Nonlinear Flap-Lag-Axial Equations of a Rotating Beam with Arbitrary Precone Angle,” AIAA Paper No. 78-491.

    Google Scholar 

  • Lake, R. C., Nixon, M. W., Wilbur, M. L. Singleton, J. D. and Mirick, R. H. (1992) “A Demonstration of Passive Blade Twist Control Using Extension-Twist Coupling,” Paper AIAA-92-2468-CR, SDM Conference, Dallas, Texas.

    Google Scholar 

  • Lee, H. P. (1993) “Vibration of an Inclined Rotating Cantilever Beam With Tip Mass,” Journal of Vibration and Acoustics, Trans. ASME, 115, July, pp. 241–245.

    Google Scholar 

  • Lee, S. Y. and Kuo, Y. H., (1992) “Bending Vibrations of a Rotating Non-Uniform Beam with an Elastically Restrained Root,” Journal of Sound and Vibration, Vol. 154, No. 3, pp.441–451.

    Article  Google Scholar 

  • Lee, S.Y. and Lin, S. M. (1994) “Bending Vibration of Rotating Nonuniform Timoshenko Beams with an Elastically Restrained Root,” Journal of Applied Mechanics, Trans. ASME, Paper No. 94-WA/APM-8.

    Google Scholar 

  • Leissa, A. and Co, C.M. (1984) “Coriolis Effects on the Vibration of Rotating Beams and Plates,” Proceedings of the 12th Southeastern Conference on Theoretical and Applied Mechanics, Callaway Gardens, Pine Mountain, GA, May 10–11, pp. 508–513.

    Google Scholar 

  • Librescu, L. (1975) Elastostatics and Kinetics of Anisotropic and Heterogeneous Shell-Type Structures, Noordhoff International Publishing, Leyden, Netherlands, pp. 560–598.

    Google Scholar 

  • Librescu, L. and Song, O. (1991) “Behavior of Thin-Walled Beams Made of Advanced Composite Materials and Incorporating Non-Classical Effects,” Applied Mechanics Reviews, Vol. 44, No. 11, Part 2, November, pp. 174–180.

    Google Scholar 

  • Librescu, L. and Thangjiham, S. (1991) “Analytical Studies on Static Aeroelastic Characteristics for Composite Forward-Swept Wing Aircraft,” Journal of Aircraft, Vol. 28, No. 2, pp. 151–157.

    Google Scholar 

  • Librescu, L. and Song, O. (1992) “On the Static Aeroelastic Tailoring of Composite Aircraft Swept Wings Modelled as Thin-Walled Beam Structures,” Composites Engineering, Vol. 2, No. 5–7, pp. 497–512.

    Google Scholar 

  • Librescu, L., Song, O. and Rogers, C. A. (1993) “On Adaptive Vibration Behavior of Cantilevered Structures Modelled as Composite Thin-Walled Beams,” International Journal of Engineering Science, Vol. 31, No. 5, pp. 775–792.

    Article  Google Scholar 

  • Librescu, L., Meirovitch, L. and Song, O. (1996a) “Refined Structural Modeling for Enhancing Vibrational and Aeroelastic Characteristics of Composite Aircraft Wings,” La Recherche Aerospatiale, 1, pp. 23–35.

    Google Scholar 

  • Librescu, L., Meirovitch, L. and Song, O. (1996b) “Integrated Structural Tailoring and Control Using Adaptive Materials for Advanced Aircraft Wings,” Journal of Aircraft, Vol. 22, No. 1, Jan.–Feb., pp. 203–213.

    Google Scholar 

  • Librescu, L., Lin, W., Nemeth, M. P. and Starnes, Jr., J. H., (1996c) “Vibration of Geometrically Imperfect Panels Subjected to Thermal and Mechanical Loads,” Journal of Spacecraft and Rockets, Vol. 33, No. 2, March–April, pp. 285–291.

    Google Scholar 

  • Librescu, L., Lin, W., Nemeth, M. P. and Starnes, Jr., J. H., (1996d) “Frequency-Load Interaction of Geometrically Imperfect Curved Panels Subjected to Heating,” AIAA Journal, Vol. 34, No. 1, pp. 166–177.

    Google Scholar 

  • Librescu, L., Meirovitch, L. and Na, S. S. (1997) “Control of Cantilevers Vibration via Structural Tailoring and Adaptive Materials,” AIAA Journal, Vol. 35, No. 8, August pp. 1309–1315.

    Google Scholar 

  • Librescu, L., Song, O. and Kwon, H. D. (1999) “Vibration and Stability Control of Gyroelastic Thin-Walled Beams via Smart Materials Technology,” in Smart Structures, J. Holnicki-Szulk and J. Rodellar, (Eds.), Kluwer Academic Publication, pp. 163–172.

    Google Scholar 

  • Librescu, L. and Na, S. S. (2001) “Active Vibration of Thin-Walled Tapered Beams Using Piezoelectric Strain Actuation,” Journal of Thin-Walled Structures, Vol. 39, No. 1, pp. 65–68.

    Google Scholar 

  • Librescu, L., Oh, S-Y. and Song, O. (2003) “Spinning Thin-Walled Beams Made of Functionally Graded Materials: Modeling, Vibration and Instability,” European Journal of Mechanics A/Solids, Vol. 23, No. 3, pp. 499–515.

    Google Scholar 

  • Librescu, L., Oh, S-Y. and Song, O. (2005) “Thin-Walled Beams Made of Functionally Graded Materials and Operating in a High Temperature Environment: Vibration and Stability,” Journal of Thermal Stresses, Vol. 28, Nos. 6–7, pp. 649–712.

    Google Scholar 

  • Lin, S. M. (1997) “Vibration of Elastically Restrained Nonuniform Beams with Arbitrary Pretwist,” AIAA Journal, Vol. 35, No. 11, pp. 1681–1687.

    MATH  Google Scholar 

  • Lo, H. and Renbarger, J. L. (1952) “Bending Vibrations of a Rotating Beam,” Proceedings of the First U. S. National Congress of Applied Mechanics, New York, N.Y., pp. 75–79.

    Google Scholar 

  • Lo, H., Goldberg, J. E. and Bogdanoff, J. L. (1960) “Effect of Small Hub-Radius Change on Bending Frequencies of a Rotating Beam,” Journal of Applied Mechanics, Trans. ASME, Vol. 27, September, pp. 548–550.

    Google Scholar 

  • Loy, C. T., Lam, K. Y. and Reddy, J. N. (1999) “Vibration of Functionally Graded Cylindrical Shells,” International Journal of Mechanical Sciences, Vol. 41, No. 3, pp. 309–324.

    Article  Google Scholar 

  • Mansfield, E. H. and Sobey, A. J. (1979) “The Fibre Composite Helicopter Blade — Part I: Stiffness Properties: Part II: Prospects for Aeroelastic Tailoring,” Aeronautical Quarterly, Vol. 30, No. 2, pp. 413–449.

    Google Scholar 

  • McGee, O. G. (1992) “Influence of Warping-Pretwist Coupling on the Torsional Vibration of Centrifugally-Stressed Cantilevers with Thin-Walled Open Profiles,” Computers & Structures, Vol, 42, No. 2, pp. 175–195.

    MATH  Google Scholar 

  • Na, S. S. and Librescu (2000) “Modeling and Vibration Feedback Control of Rotating Tapered Beams Incorporating Adaptive Capabilities,” Recent Advanced in Solids and Structures-2000, PVP-Vol. 415, H. H. Chung and Y. W. Kwon (Eds.), ASME, New York, pp. 35–43.

    Google Scholar 

  • Na, S. S., Librescu, L. and Shim J-K. (2003a) “Modeling and Bending Vibration Control of Nonuniform Thin-Walled Rotating Beams Incorporating Adaptive Capabilities,” International Journal of Mechanical Sciences, Vol. 45, No. 8, pp. 1347–1367.

    Article  Google Scholar 

  • Na, S. S., Librescu, L. and Jung, H. (2003b) “Vibration Control of Rotating Composite Thin-Walled Beams in a Temperature Environment,” in Proceedings of the 5th International Congress on Thermal Stresses and Related Topics, Blacksburg, VA, June 8–11, L. Librescu and P. Marzocca (Eds.), Vol. 2, WA-6-4-(1-4).

    Google Scholar 

  • Na, S. S. and Librescu, L. and Jung, H. (2004) “Dynamics and Active Bending Vibration Control of Turbomachinery Rotating Blades Featuring Temperature-Dependent Material Properties,” Journal of Thermal Stresses, Vol. 24, pp. 625–644.

    Google Scholar 

  • Na, S. S., Librescu, L., Rim, S. and Jeong, I-J., (2004) “Free Vibration and Control of Composite Non-Uniform Thin-Walled Beams Featuring Bending-Bending Elastic Coupling,” Proceeding of the IMECE 2004, ASME International Mechanical Engineering Congress, November 13–19, 2004, Anaheim, Califormia.

    Google Scholar 

  • Nagaraj, V. T. and Sahu, N. (1982) “Torsional Vibration of Non-Uniform Rotating Blades with Attachment Flexibility,” Journal of Sound and Vibration, Vol. 80, No. 3, pp. 401–411.

    Article  Google Scholar 

  • Nixon, M.W. (1987) “Extension-Twist Coupling of Composite Circular Tubes with Application to Tilt Rotor Blade Design,” 28th Structure, Structural Dynamics and Materials Conference, April 6–8, Monterey, CA, AIAA Paper No. 87-0772, pp. 295–303.

    Google Scholar 

  • Nixon, M. W. (1989) “Analytical and Experimental Investigations of Extension-Twist-Coupled Structures,” George Washington University Masters Thesis, Hampton, VA.

    Google Scholar 

  • Nixon, M.W. (1992) “Parameter Studies for Tiltrotor Aeroelastic Stability in High-Speed Flight,” AIAA-92-5568-CR.

    Google Scholar 

  • Noda, N. and Jin, Z. H. (1993) “Thermal Stress Intensity Factors for a Crack in a Strip of a Functionally Gradient Material,” International Journal of Solids and Structures, Vol. 30, pp. 1039–1056.

    Article  Google Scholar 

  • Noor, A. K. and Burton, W. S. (1992) “Computational Models for High-Temperature Multilayered Composite Plates and Shells,” Applied Mechanics Reviews, Vol. 45, No. 10, pp. 414–446.

    Google Scholar 

  • Oh, S-Y., Song, O. and Librescu, L. (2003a) “Effects of Pretwist and Presetting on Coupled Bending Vibrations of Rotating Composite Beams,” International Journal of Solids and Structures, Vol. 40, pp. 1203–1224.

    Article  Google Scholar 

  • Oh, S-Y., Librescu, L. and Song, O. (2003b) “Thin-Walled Rotating Blades Made of Functionally Graded Materials: Modeling and Vibration Analysis,” AIAA 2003-1541, 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Norfolk, VA April 7–10.

    Google Scholar 

  • Oh, S-Y., Librescu, L. and Song, O. (2003c) “Thin-Walled Rotating Blades Made of Functionally Graded Materials: Thermoelastic Modeling and Vibration Analysis,” in Thermal Stresses 03, Vol. 1, MA-2-5-1-MA-2-5-4, L. Librescu and P. Marzocca (Eds.), Virginia Tech, Blacksburg, VA, USA.

    Google Scholar 

  • Oh, S-Y., Librescu, L. and Song, O. (2003d) “Thermoelastic Modeling and Vibration of Functionally Graded Thin-Walled Rotating Blades,” AIAA Journal, Vol. 41, No. 10, pp. 2051–2060.

    Google Scholar 

  • Oh, S-Y., Librescu, L. and Song, O. (2003e) “Vibration of Turbomachinery Rotating Blades Made-Up of Functionally Graded Materials and Operating in a High Temperature Field,” Acta Mechanica, Vol. 166, pp. 69–87.

    Article  Google Scholar 

  • Oh, S-Y., Librescu, L. and Song, O. (2004) “Thin-Walled Rotating Composite Blades Featuring Extension-Twist Elastic Coupling,” AIAA-2004-2049, 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Palm Springs, CA April 19–22.

    Google Scholar 

  • Oh, S-Y., Librescu, L. and Song, O. (2005) “Modeling and Vibration of Thin-Walled Rotating Composite Blades Featuring Extension-Twist Elastic Coupling,” The Aeronautical Journal, Vol. 109, May, No. 1095, pp. 233–246.

    Google Scholar 

  • Oh, S-Y. (2004) Personal Communication.

    Google Scholar 

  • Palazotto, A.N. and Linnemann, P.E. (1991) “Vibration and Buckling Characteristics of Composite Cylindrical Panels Incorporating the Effects of a Higher Order Shear Theory,” International Journal of Solids and Structures, Vol. 28, No. 3, pp. 341–361.

    Article  Google Scholar 

  • Peters, D. A. (1973) “An Approximate Solution for the Free Vibrations of Rotating Uniform Cantilever Beams,” NASA TM X-62, 299, September.

    Google Scholar 

  • Peters, D. A. (1995) “Aeroelastic Response of Rotorcraft,” in a Modern Course in Aeroelasticity, (Third Edition), Edited by E. H. Dowell, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Pindera, M-J. and Aboudi, J. (2000) “A Coupled Higher-Order Theory for Cylindrical Structural Components with Bi-Directionally Graded Microstructures,” NASA CR 210350, NASA-Glenn Research Center, Cleveland, OH.

    Google Scholar 

  • Pradhan, S. C., Loy, C. T., Lam, K. Y. and Reddy, J. N. (2000) “Vibration Characteristics of Functionally Graded Cylindrical Shells Under Various Boundary Conditions,” Journal of Applied Acoustics, Vol. 61, No. 1, pp. 119–129.

    Google Scholar 

  • Praveen, G. N. and Reddy, J. N. (1998) “Nonlinear Transient Thermoelastic Analysis of Functionally Graded Ceramic-Metal Plates,” International Journal of Solids Structures, Vol. 35, No. 33, pp. 4457–4476.

    Google Scholar 

  • Putter, S. and Manor, H. (1978), “Natural Frequencies of Radial Rotating Beams,” Journal of Sound and Vibrations, Vol. 56, No. 2, pp. 175–185.

    Google Scholar 

  • Qin, Z. and Librescu, L. (2001) “Static and Dynamic Validations of a Refined Thin-Walled Composite Beam Model,” AIAA Journal, Vol. 39, No. 12, pp. 2422–2424.

    Google Scholar 

  • Qin, Z. and Librescu, L. (2002) “On a Shear-Deformable Theory of Anisotropic Thin-Walled Beams: Further Contribution and Validations,” Composite Structures, Vol. 56, No. 4, pp. 345–358.

    Article  Google Scholar 

  • Rand, O. (1991) “Periodic Response of Thin-Walled Composite Helicopter Rotor Blades,” Journal of the American Helicopter Society, Vol. 36, No. 4, pp. 3–11.

    Google Scholar 

  • Rand, O. (1996) “Analysis of Composite Rotor Blades,” in Numerical Analysis and Modelling of Composite Materials, J. W. Bull, Editor, Blackie Academic and Professional, Chapman and Hall, pp. 1–26.

    Google Scholar 

  • Rao, J. S. (1971) “Flexural Vibration of Pre-Twisted Beams of Rectangular Cross-Section,” Journal of the Aeronautical Society of India, Vol. 23, No. 1, pp. 62–64.

    Google Scholar 

  • Rao, J. S. (1977), “Coupled Vibrations of Turbomachine Blades,” The Shock Vibration Bulletin, Vol. 47, pp. 107–125.

    Google Scholar 

  • Rao, J. S. (1991) Turbomachine Blade Vibration, John Wiley & Sons, New York, Chickester, Brisbane, Toronto, Singapore.

    Google Scholar 

  • Reddy, J. N. and Chin, C. D. (1998) “Thermomechanical Analysis of Functionally Graded Cylinders and Plates,” Journal of Thermal Stresses, Vol. 21, pp. 593–626.

    Google Scholar 

  • Reddy, J.N. (2000) “Analysis of Functionally Graded Plates,” International Journal of Numerical Meth. Engr., No. 47, pp. 663–684.

    MATH  Google Scholar 

  • Rehfield, L. W. (1985) “Design Analysis Methodology for Composite Rotor Blades,” AFWALTR-85-3094, June, pp. (V(a)-1)–(V(a)-15).

    Google Scholar 

  • Rehfield, L.W. and Atilgan, A. R. (1989) “Toward Understanding the Tailoring Mechanisms for Thin-Walled Composite Tubular Beams,” in Proceeding of the First USSR-USA Symposium on Mechanics of Composite Materials, Riga, Latvia, USSR, May 23–26, 1989, S. W. Tsai, J. M. Whitney, T. W. Choi and R. M. Jones (Eds.), ASME, pp. 187–196.

    Google Scholar 

  • Rosen, A. and Friedmann, P. (1978) “Nonlinear Equations of Equilibrium for Elastic Helicopter or Wind Turbine Blades Undergoing Moderate Deformation,” University of California at Los Angeles, School of Engineering and Applied Science Report, UCLA-ENG-7718, DOE/NASA/3082-78/1, NASA CR-159478.

    Google Scholar 

  • Rosen, A. (1978, 1980) “The Effect of Initial Twist on the Torsional Rigidity of Beams-Another Point of View,” Technion, Department of Aeronautical Engineering, TAE Report No. 360, published also in 1980, Journal of Applied Mechanics, ASME Vol. 47, pp. 389—393.

    Google Scholar 

  • Rosen, A., Loewy, R. G., Mathew, M. B. (1987), “Use of Twisted Principal Coordinates and Non-Physical Coordinates in Blade Analysis, Vertica, Vol. 11, 541–572.

    Google Scholar 

  • Rosen, A. (1991) “Structural and Dynamic Behavior of Pretwisted Rods and Beams,” Applied Mechanics Reviews, Vol. 44, No. 12, art 1, pp. 483–515.

    Google Scholar 

  • Sabuncu, M. (1985) “Coupled Vibration Analysis of Blades with Angular Pretwist of Cubic Distribution,” AIAA Journal, Vol. 23, No. 9, pp. 1424–1430.

    Google Scholar 

  • Sankar, B. V. (2001) “An Elasticity Solution for Functionally Graded Beams,” Composites Science and Technology, Vol. 61, pp. 689–696.

    Article  Google Scholar 

  • Sankar, B. V. and Tzeng, T. J. (2002) “Thermal Stresses in Functionally Graded Beams,” AIAA Journal, Vol. 40, No. 6, pp. 1228–1232.

    Google Scholar 

  • Shen, H.-S. (2002) “Postbuckling Analysis of Axially-Loaded Functionally Graded Cylindrical Shells in Thermal Environments,” Composites Science and Technology, Vol. 62, pp. 977–987.

    Google Scholar 

  • Slyper, H. A. (1962) “Coupled Bending Vibration of Pretwisted Cantilever Beams,” Journal of Mechanical Engineering Sciences, Vol. 4, No. 4, pp. 365–379.

    Google Scholar 

  • Song, O. and Librescu, L. (1993) “Free Vibration of Anisotropic Composite Thin-Walled Beams of Closed Cross-Section Contour,” Journal of Sound and Vibration, Vol. 167, No. 1, pp. 129–147.

    Article  Google Scholar 

  • Song, O., Librescu, L. and Rogers, C. A. (1994) “Adaptive Response Control of Cantilevered Thin-Walled Beams Carrying Heavy Concentrated Masses,” Journal of Intelligent Materials Systems and Structures, Vol. 5, No. 1, January, pp. 42–48.

    Google Scholar 

  • Song, O. and Librescu, L. (1995) “Bending Vibration of Cantilevered Thin-Walled Beams Subjected to Time-Dependent External Excitations,” Journal of the Acoustical Society of America, Vol. 98, No. 1, pp. 313–319.

    Article  Google Scholar 

  • Song, O. and Librescu, L. (1996) “Bending Vibrations of Adaptive Cantilevers with External Stores,” International Journal of Mechanical Sciences, Vol. 28, No. 5, pp. 483–498.

    Google Scholar 

  • Song, O. and Librescu, L. (1997) “Structural Modeling and Free Vibration Analysis of Rotating Composite Thin-Walled Beams,” Journal of the American Helicopter Society, Vol. 42, No. 4, pp. 358–369.

    Google Scholar 

  • Song, O. and Librescu, L. (1999) “Modeling and Dynamic Behavior of Rotating Blades Carrying a Tip Mass and Incorporating Adaptive Capabilities,” Acta Mechanica,Vol. 134, pp. 169–197.

    Article  Google Scholar 

  • Song, O., Librescu, L. and Oh, S-Y. (2001a) “Vibration of Pretwisted Adaptive Rotating Blades Modeled as Anisotropic Thin-Walled Beams,” AIAA Journal, Vol. 39, No. 2, February, pp. 285–295.

    Google Scholar 

  • Song, O., Librescu, L. and Oh, S.-Y (2001b) “Dynamic of Pretwisted Rotating Thin-Walled Beams Operating in a Temperature Environment,” Journal of Thermal Stresses, Vol. 24, No. 3, pp. 255–279.

    Google Scholar 

  • Song, O, Oh, S-Y. and Librescu, L. (2002) “Dynamic Behavior of Elastically Tailored Rotating Blades Modeled as Pretwist Thin-Walled Beams and Incorporating Adaptive Capabilities,” International Journal of Rotating Machinery, Vol. 8, No. 1.

    Google Scholar 

  • Stafford, R. O. and Giurgiutiu, V. (1975) “Semi-Analytic Methods for Rotating Timoshenko Beams,” International Journal of Mechanical Sciences, Vol. 17, pp. 719–727.

    Article  Google Scholar 

  • Stemple, A. D. and Lee, S.W. (1989) “Finite Element Modeling for Composite Beams Undergoing Large Deflections with Arbitrary Cross Sectional Warping,” Int. of J. Numerical Methods in Engineering, Vol. 28, No. 9, pp. 2143–2160.

    Google Scholar 

  • Subrahmanyam, K. B., Kulkarni, S. V. and Rao, J. S. (1981) “Coupled Bending-Bending Vibrations of Pretwisted Cantilever Blading Allowing for Shear Deformation and Rotary Inertia by Reissner Method,” International Journal of Mechanical Sciences, Vol. 23, pp. 517–530.

    Article  Google Scholar 

  • Subrahmanyam, K. B. and Kaza, K. R. V. (1985) “Finite Difference Analysis of Torsional Vibrations of Pretwisted, Rotating, Cantilever Beams with Effects of Warping,” Journal of Sound and Vibration, Vol. 99, No. 2, pp. 213–224.

    Article  Google Scholar 

  • Subrahmanyam, K. B. and Kaza, K. R.V. (1986) “Vibration and Buckling of Rotating Pretwisted, Preconed Beams Including Coriolis Effects,” Journal of Vibration, Acoustics, Stress and Reliability in Design, Trans. ASME, Vol. 108, April, pp. 140–149.

    Google Scholar 

  • Subrahmanyam, K. B., Kaza, K. R. V., Brown, G. V. and Lawrence, C. (1987) “Nonlinear Vibration and Stability of Rotating Pretwisted, Preconed Blades Including Coriolis Effects,” Journal of Aircraft, Vol. 24, No. 5, pp. 342–352.

    Google Scholar 

  • Tang, S. (1969) “Natural Vibration of Isotropic Plates with Temperature-Dependent Properties,” AIAA Journal, Vol. 7, No. 4, pp. 725–727.

    MATH  Google Scholar 

  • Tanigawa, Y. (1992) “Theoretical Approach of Optimum Design for a Plate of Functionally Gradient Materials Under Thermal Loading,” Thermal Shock and Thermal Fatigue Behavior of Advanced Ceramics, NATO ASI Series E, Vol. 241, pp. 171–180.

    Google Scholar 

  • Tomar, J. A. and Jain, R. (1985) “Thermal Effect on Frequencies of Coupled Vibrations of Pretwisted Rotating Beams,” AIAA Journal, Vol. 23, No. 8, pp. 1293–1296.

    Google Scholar 

  • Touloukian, Y. S. (1967) Thermophysical Properties of High Temperature Solid Materials, Macmillan, New York.

    Google Scholar 

  • Tsuiji, T. (1976) “Torsion of Pretwisted Thin-Walled Beams,” Theoretical and Applied Mechanics, Vol. 26, University of Tokyo Press, pp. 75–80.

    Google Scholar 

  • Tzou, H. S. and Zhong, J. R. (1991) “Adaptive Piezoelectric Shell Structures: Theory and Experiments,” 32nd AIAA SDM Conference, Baltimore, Maryland, April 8–12, Paper No. AIAA-91-1238.

    Google Scholar 

  • Tzou, H. S. (1993) Piezoelectric Shells, Distributed Sensing and Control of Continua, Kluwer Academic Publ., Dordrecht/Boston/London.

    Google Scholar 

  • Vel, S. S. and Batra, R. C., (2002) “Exact Solution for Thermoelastic Deformations of Functionally Graded Thick Rectangular Plates,” AIAA Journal, Vol. 40, No. 7, pp. 1421–1433.

    Google Scholar 

  • Venkatesan, C. and Nagaraj, C. T., (1981) “On the Axial Vibrations of Rotating Bars,” Journal of Sound and Vibration, Vol. 74, No. 1, pp. 143–147.

    Article  Google Scholar 

  • Volovoi, V. V., Hodges, D. H., Cesnik, C. E. S. and Popescu, B., (2001) “Assessment of Beam Modeling Methods for Rotor Blades Applications,” Mathematical and Computer Modelling, Vol. 33, Nos. 10–11, pp. 1099–1112.

    Google Scholar 

  • Vorob’ev, I. S. (1988) Vibrations of Turbomachinery Blades (In Russian),” Kiev, Naukova, Dumka.

    Google Scholar 

  • Wang, J. T. S., Mahrenholtz, O., Böhm, J. (1976), “Extended Galerkin’s Method for Rotating Beam Vibrations Using Legendre Polynomials, Solid Mechanics Archives, Vol. 1, pp. 341–356.

    Google Scholar 

  • Washizu, K. (1964) “Some Considerations on a Naturally Curved and Twisted Slender Beams,” Journal of Mathematics and Physics, Vol. 43, No. 2, pp. 111–116.

    MATH  MathSciNet  Google Scholar 

  • Wright, A. D., Smith, C. E., Thresher, R. W. and Wang, J. L. C., (1982) “Vibration Modes of Centrifugally Stiffened Beams,” Journal of Applied Mechanics, Trans. ASME, Vol. 49, March, pp. 197–202.

    Google Scholar 

  • Yokoyama, T. (1988), “Free Vibration Characteristics of Rotating Timoshenko Beams,” International Journal of Mechanical Sciences, Vol. 30, No. 10, pp. 743–755.

    Article  MATH  Google Scholar 

  • Yokoyama, T. and Markiewicz, M. (1993) “Flexural Vibrations of Rotating Timoshenko Beam with Tip Mass,” Asia-Pacific Vibration Conference, Kitakyushu, Japan, Nov. pp. 382–387.

    Google Scholar 

  • Yoo, H. H., Kwak, J.Y. and Chung, J. (2001) “Vibration Analysis of Rotating Pre-Twisted Blades with a Concentrated Mass,” Journal of Sound and Vibration, Vol. 240, No. 5, pp. 891–908.

    Article  Google Scholar 

  • Young, M. I. (1973) “The Influence of Pitch and Twist on Blade Vibration,” Journal of Aircraft, Vol. 10, No. 6, pp. 383–384.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

(2006). Rotating Thin-Walled Anisotropic Beams. In: Thin-Walled Composite Beams. Solid Mechanics and Its Applications, vol 131. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4203-5_9

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4203-5_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3457-2

  • Online ISBN: 978-1-4020-4203-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics