Skip to main content

Spinning Thin-Walled Anisotropic Beams

  • Chapter
Book cover Thin-Walled Composite Beams

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 131))

  • 1623 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anliker, M. and Troesch, B. A. (1963) “Coupled Bending Vibration of Pretwist Cantilever Beams,” Zeitschrift für Agewandte Mathematics und Physics (ZAMP), Vol. 4, pp. 365–379.

    Google Scholar 

  • Argento, A. and Scott, R. A. (1992) “Dynamic Response of a Rotating Beam Subjected to an Accelerating Distributed Surface Force,” Journal of Sound and Vibration, Vol. 157, No. 2, pp. 221–231.

    Article  Google Scholar 

  • Argento, A. (1995) “A Spinning Beam Subjected to a Moving Deflection Dependent Load, Part I: Response and Resonance,” Part II: Parametric Resonance (with Morano, H. L.) Journal of Sound and Vibration, Vol. 182, No. 4, pp. 595–615 and pp. 617–622.

    Google Scholar 

  • Argento, A. and Scott, R. A. (1995) “Elastic Wave Propagating in a Timoshenko Beam Spinning About its Longitudinal Axis,” Wave Motion, Vol. 21, pp. 67–74.

    Article  Google Scholar 

  • Bauchau, O. (1981) “Design, Manufacturing and Testing of High Speed Rotating Graphite-Epoxy Shaft,” Ph.D. Thesis, Massachusetts Inst. of Technology, Dept. of Aeronautical & Astronautics.

    Google Scholar 

  • Bert, C. W. and Kim, C. D. (1995a) “Whirling of Composite-Material Drive-shaft Including Bending-Twisting Coupling and Transverse Shear Deformation,” Journal of Vibration and Acoustics, Trans. ASME, Vol. 117, pp. 17–21.

    Google Scholar 

  • Bert, C. W. and Kim, C. D. (1995b) “Dynamic Instability of Composite Material Drive Shaft Subjected to Fluctuating Torque and/or Rotational Speed,” Dynamic and Stability of Systems, Vol. 10, No. 2, pp. 125–147.

    Google Scholar 

  • Bhaskar, K. and Librescu, L. (1995) “A Geometrically Non-Linear Theory for Laminated Anisotropic Thin-Walled Beams,” International Journal of Engineering Science, Vol. 33, No. 9, pp. 1331–1344.

    Article  Google Scholar 

  • Chen, M. L. and Liao, Y. S. (1991) “Vibrations of Pretwisted Spinning Beams under Axial Compressive Loads with Elastic Constraints,” Journal of Sound and Vibration, Vol. 147, No. 3, pp. 497–513.

    Article  Google Scholar 

  • Chen, Y., Zhao, H. B., Shen Z. P., Grieger, I. and Kröplin, B.H. (1993) “Vibrations of High Speed Rotating Shells with Calculations for Cylindrical Shells,” Journal of Sound and Vibration, Vol. 160, pp. 137–160.

    Article  Google Scholar 

  • Chen, L. W. and Peng, W. K. (1998) “Stability Behavior of Rotating Composite Shafts under Axial Compressive Loads,” Composite Structures, Vol. 41,3–4, pp. 253–263.

    Google Scholar 

  • Chang, C-Y., Chang, M-Y. and Huang, J. C. (2004) “Vibration Analysis of Rotating Composite Shafts Containing Randomly Oriented Reinforcements,” Composite Structures, Vol. 63, pp. 21–32.

    Article  Google Scholar 

  • Cheng, Z. W. and Batra, R. C. (2000) “Three-Dimensional Thermoelastic Deformation of a Functionally Graded Elliptic Plate,” Composites, Part B, Vol. 31, pp. 97–106.

    Article  Google Scholar 

  • Curti, G., Raffa, F. A. and Vatta, F. (1992) “An Analytical Approach to the Dynamic of Rotating Shafts,” Meccanica, Vol. 27, pp. 285–292.

    Article  Google Scholar 

  • Dawson, B. (1968) “Coupled Bending-Bending Vibration of Pretwisted Cantilever Blading Treated by the Rayleigh-Ritz Energy Method,” Journal of Mechanical Engineering Science, Vol. 10, No. 5.

    Google Scholar 

  • D’Eleuterio, G. M. and Hughes, P. C. (1987) “Dynamics of Gyroelastic Spacecraft,” Journal Guidance Control and Dynamics, Vol. 10, No. 4, pp. 401–405.

    Google Scholar 

  • Filipich, C. P., Maurizi, M. J. and Rosales, M. B. (1987) “Free Vibrations of a Spinning Uniform Beam with Ends Elastically Restrained against Rotation,” Journal of Sound and Vibration, Vol. 116, No. 3, pp. 475–482.

    Google Scholar 

  • Filipich, C. P., Maurizi, M. J. and Rosales, M. B. (1989) “A Note on the Free Vibration of a Spinning Beam,” Journal of Sound and Vibration, Vol. 129, pp. 350–355.

    Article  Google Scholar 

  • Gulick, D. W. (1994) “Thermally Induced Vibrations of an Axial Boom on a Spin-Stabilized Spacecraft,” AIAA-94-1556 CP.

    Google Scholar 

  • Han, R. P. S. and Zu, J. W. Z. (1992) “Modal Analysis of Rotating Shafts. A Body Fixed Axis Formulation Approach,” Journal of Sound and Vibration, Vol. 156, No. 1, pp. 1–16.

    Article  Google Scholar 

  • Hua, L. and Lam, K. Y. (1998) “Frequency Characteristics of a Thin Rotating Cylindrical Shell Using the Generalized Differential Quadratic Method,” International Journal of Mechanical Sciences, Vol. 40, No. 5, pp. 443–459.

    Google Scholar 

  • Huang, S. C. and Soedel, W. (1988) “On the Forced Vibration of Simply Supported Rotating Cylindrical Shells,” Journal of the Acoustical Society of America, Vol. 84, No. 1, pp 275–285, July.

    Article  Google Scholar 

  • Hughes, P. C. (1986) Spacecraft Attitude Dynamics, Wiley, New York.

    Google Scholar 

  • Huseyin, K. (1978) Vibrational and Stability of Multiple Parameters Systems, Noordhoof, Alpen Aan Den Rijn, The Netherlands.

    Google Scholar 

  • Huseyin, K. and Plaut, R. H. (1974–1975) “Transverse Vibrations and Stability of Systems with Gyroscopic Forces,” Journal of Structural Mechanics, Vol. 3, No. 2, pp. 163–177.

    Google Scholar 

  • Huseyin, K. and Plaut, R. H. (1975) “Divergence and Flutter Boundaries of Systems under Combined Conservative and Gyroscopic Forces,” Dynamics of Rotors, IUTAM Symposium, Lyngby, Denmark, August 12–16, 1974, pp. 182–205.

    Google Scholar 

  • Johnston, J. D. and Thornton, E. A. (1996) “Thermally Induced Response of Radiantly Heated Spinning Spacecraft Booms,” Journal of Thermophysics and Heat Transfer, Vol. 10,1, pp. 60–68.

    Google Scholar 

  • Kim, C. D. and Bert, C. W. (1993) “Critical Speed Analysis of Laminated Composite Hollow Drive Shaft,” Composites Engineering, Vol. 3, Nos. 7–8, pp. 663–643.

    Google Scholar 

  • Kim, W., Argento, A. and Scott, R. A. (1999) “Free Vibration of a Rotating Tapered Composite Timoshenko Shaft,” Journal of Sound and Vibration, Vol. 226, No. 1, pp. 125–147.

    Google Scholar 

  • Kim, W., Argento, A. and Scott, R. A. (2001a) “Forced-Vibration and Dynamic Stability of a Rotating Tapered Composite Timoshenko Shaft: Bending Motions in End-Milling Operations,” Journal of Sound and Vibration, Vol. 246, No. 4, pp. 583–600.

    Article  Google Scholar 

  • Kim, W., Argento, A. and Scott, R. A. (2001b) “Rotating Tapered Composite Shafts: Forced Torsional and Extensional Motions and Static Strength,” Journal of Vibration and Acoustics, Trans. ASME, Vol. 123, January, pp. 24–29.

    Article  Google Scholar 

  • Ko, E-E. and Kim, J-H. (2003) “Thermally Induced Vibrations of Spinning Thin-Walled Composite Beam,” AIAA Journal, Vol. 41, No. 2, pp. 296–303.

    MathSciNet  Google Scholar 

  • Ku, D. M. and Chen, L. W. (1994) “Stability and Whirl Speeds of Rotating Shaft under Axial Loads,” International Journal of Analytical and Experimental Modal Analysis, Vol. 9, No. 2, pp. 111–123.

    Google Scholar 

  • Lam, K. Y. and Hua, L. (1997) “Vibration Analysis of a Rotating Circular Conical Shell,” International Journal of Solids and Structures, Vol. 34, pp. 2183–2197.

    Article  Google Scholar 

  • Lee, C. W., Katz, R., Ulsoy, A. G. and Scott, R. A. (1988) “Modal Analysis of a Distributed Parameter Rotating Shaft,” Journal of Sound and Vibration, Vol. 122, pp. 119–130.

    Google Scholar 

  • Lee, C.W. and Yun, J. S. (1996) “Dynamic Analysis of Flexible Rotors Subjected to Torque and Force,” Journal of Sound and Vibration, Vol. 192, No. 2, pp. 439–452.

    Article  Google Scholar 

  • Liao, C. L. and Dang, Y.H. (1992) “Structural Characteristics of Spinning Pretwisted Orthotropic Beams,” Computers & Structures, Vol. 45, No. 4, pp. 715–731.

    Article  Google Scholar 

  • Librescu, L., (1965, 1967) “Aeroelastic Stability of Orthotropic Heterogeneous Thin Panels in the Vicinity of the Flutter Critical Boundary,” Journal de Mécanique, Vol. 4, No. 1, pp. 51–76, (II) Journal de Mécanique, Vol. 6, No. 1, pp. 133–152.

    MathSciNet  Google Scholar 

  • Librescu, L. (1975) Elastostatics and Kinetics of Anisotropic and Heterogeneous Shell Type Structures, Noordhoff International Publishing, Leyden, Netherlands.

    Google Scholar 

  • Librescu, L., Song, O. and Kwon, H-D. (1999) “Vibration and Stability Control of Gyroelastic Beams via Smart Materials Technology,” Smart Structures NATO Science Series, 3. High Technology — Vol. 65, J. Holnicki-Szulc and J. Rodellar (Eds.), Kluwer Academic, Dordrecht, 1999, pp. 163–172.

    Google Scholar 

  • Librescu, L., Chiocchia, G. and Marzocca, P. (2003a) “Implications of Physical/Aerodynamical Nonlinearities on the Character of Flutter Instability Boundary,” International Journal of Non-linear Mechanics, Vol. 38, pp. 173–199.

    Article  Google Scholar 

  • Librescu, L., Oh, S-Y. and Song, O. (2003b) “Spinning Thin-Walled Beams Made of Functionally Graded Materials: Modeling, Vibration and Instability,” European Journal of Mechanics, A/Solids, Vol. 23, No. 3, pp. 499–515.

    Google Scholar 

  • Librescu, L., Marzocca, P. and Silva, W. A. (2004) “Linear/Nonlinear Supersonic Panel Flutter in a High Temperature Field,” Journal of Aircraft, Vol. 41, No. 4, pp. 918–924.

    Google Scholar 

  • Librescu, L., Oh, S-Y. and Song, O. (2005) “Thin-Walled Beams Made of Functionally Graded Materials and Operating in a High Temperature Environment: Vibration and Stability,” Journal of Thermal Stresses, Vol. 28, Nos 6–7, pp. 649–712.

    Google Scholar 

  • Likins, P.W., Barbera, F. J. and Baddeley, V. (1973) “Mathematical Modeling of Spinning Elastic Bodies for Modal Analysis,” AIAA Journal, Vol. 11, pp. 1251–1258.

    Google Scholar 

  • Oh, S-Y., Librescu, L. and Song, O. (2005) “Vibration Instability of Functionally Graded Circular Cylindrical Spinning Thin-Walled Beams,” Journal of Sound and Vibration, Vol. 285, Nos 4–5, pp. 1071–1091.

    Google Scholar 

  • Païdoussis, M. P. (1998) Fluid-Structure Interactions. Slender Structures and Axial Flow, Vol. 1, Academic Press, San Diego, London, New York, Boston, Sydney, Tokyo, Toronto.

    Google Scholar 

  • Rand, O. and Stavsky, Y. (1991) “Free Vibrations of Spinning Composite Cylindrical Shells,” International Journal of Solids and Structures, Vol. 28, No. 7, pp. 831–843.

    Article  Google Scholar 

  • Rosales, M. B. and Filipich, C. P. (1993) “Dynamic Stability of a Spinning Beam Carrying an Axial Dead Load,” Journal of Sound and Vibration, Vol. 163, No. 2, pp. 283–294.

    Article  Google Scholar 

  • Sabuncu, M. (1985) “Coupled Vibration Analysis of Blades with Angular Pretwist of Cubic Distribution,” AIAA Journal, Vol. 23, pp. 1424–1430.

    Google Scholar 

  • Saito, T. and Endo, M. (1986) “Vibration Analysis of Rotating Cylindrical Shells Based on the Timoshenko Beam Theory,” Bulletin of JSME, Vol. 29, No. 250, pp. 1239–1245, April.

    Google Scholar 

  • Shaw, J. and Shaw, S. W. (1989) “Instabilities and Bifurcations in a Rotating Shaft,” Journal of Sound and Vibration, Vol. 132, No. 2, pp. 227–244.

    Article  MathSciNet  Google Scholar 

  • Shieh, R.C. (1971) “Energy and Variational Principles for Generalized (gyroscopic) Conservative Problems,” International Journal of Non-Linear Mechanics, Vol. 5, pp. 495–509.

    MathSciNet  Google Scholar 

  • Shieh, R. C. (1982) “Some Principles of Elastic Shaft Stability Including Variational Principles,” Journal of Applied Mechanics, Trans. ASME, Vol. 49, pp. 191–196.

    MATH  Google Scholar 

  • Sivadas, K. R. (1995) “Vibration Analysis of Pre-Stressed Rotating Thick Circular Conical Shell,” Journal of Sound and Vibration, Vol. 180, pp. 99–109.

    Google Scholar 

  • Slyper, H. A. (1962) “Coupled Bending Vibrations of Pretwisted Cantilever Beams,” Journal of Mechanical Engineering Science, Vol. 4, pp 365–379.

    Google Scholar 

  • Song, O. and Librescu, L. (1993) “Free Vibration of Anisotropic Composite Thin-Walled Beams of Closed Cross-Section Contour,” Journal of Sound and Vibration, Vol. 167, No. 1, pp. 129–147.

    Article  Google Scholar 

  • Song, O. and Librescu, L. (1997) “Modelling and Vibration of Pretwisted Spinning Composite Thin-Walled Beams,” Paper AIAA-97-1091, part 1, pp. 312–322, Kissimmee, Florida, April 7–10.

    Google Scholar 

  • Song, O. and Librescu, L. (1998) “Anisotropy and Structural Coupling on Vibration and Instability of Spinning Thin-Walled Beams,” Journal of Sound and Vibration, Vol. 204, No. 3, pp. 477–494.

    Google Scholar 

  • Song, O., Jeong, N-H. and Librescu, L. (2000a) “Vibration and Stability of Pretwisted Spinning Thin-Walled Composite Beams Featuring Bending-Bending Electric Coupling,” Journal of Sound and Vibration, Vol. 237, No. 3, Oct. 26, pp. 513–533.

    Article  Google Scholar 

  • Song, O., Librescu, L. and Jeong, N. H. (2000b) “Vibration and Stability Control of Spinning Flexible Shaft via Integration of Smart Material Technology,” Adaptive Structures and Material Systems, ASME 2000 AD-Vol. 60, J. Redmond and J. Main (Eds.), ASME, New York, pp. 443–451.

    Google Scholar 

  • Song, O., Jeong, N-H. and Librescu, L. (2001a) “Implications of Conservative and Gyroscopic Forces on Vibration and Stability of Elastically Tailored Rotating Shaft Modeled as Composite Thin-Walled Beams,” Journal of the Acoustical Society of America, Vol. 109, No. 3, pp. 972–981.

    Article  Google Scholar 

  • Song, O., Kim, J-B. and Librescu, L. (2001b) “Synergistic Implications of Tailoring and Adaptive Materials Technology on Vibration Control of Anisotropic Thin-Walled Beams,” International Journal of Engineering Science, Vol. 39, No. 1, December, pp. 71–94.

    Article  Google Scholar 

  • Song, O., Kwon, H-D. and Librescu, L. (2001c) “Modeling, Vibration and Stability of Elastically Tailored Composite Thin-Walled Beams Carrying a Spinning Tip Rotor,” Journal of the Acoustical Society of America, Vol. 110, Issue 2, August, pp. 877–886.

    Article  Google Scholar 

  • Song, O., Librescu, L. and Kwon, H-D. (2002a) “Vibration and Stability Control of Robotic Manipulator Systems Consisting of a Thin-Walled Beam and a Spinning Tip Rotor,” Journal of Robotic Systems, Vol. 19, No. 10, pp. 469–489.

    Article  Google Scholar 

  • Song, O., Librescu, L. and Jeong, N-H. (2002b) “Vibration and Stability Control of Smart Composite Rotating Shaft Via Structural Tailoring and Piezoelectric Strain Actuators,” Journal of Sound and Vibration, Vol. 257, No. 3, pp. 503–525.

    Article  Google Scholar 

  • Sturia, F. A. and Argento, A. (1996) “Free and Forced Vibrations of a Spinning Viscoelastic Beams,” Journal of Vibration and Acoustics, Trans. ASME, Vol. 118, July, pp. 463–468.

    Google Scholar 

  • Tekinalp, O. and Ulsoy, A. G. (1989) “Modeling and Finite Element Analysis of Drill Bit Vibration,” Journal of Vibration, Acoustics, Stress and Reliability in Design, Trans. ASME, Vol. 111, pp. 148–155.

    Google Scholar 

  • Tylikowski, A. (1996) “Dynamic Stability of Rotating Composite Shafts,” Mechanics Research Communications, Vol. 23, No. 2, pp. 175–180.

    Article  MATH  Google Scholar 

  • Yamanaka, K., Heppler, G. R. and Huseyin, K. (1995) “The Stability of a Flexible Link with a Tip Rotor and a Compressive Tip Load,” IEEE Trans. Rob. Autom., Vol. 11, No. 6, pp. 882–886.

    Article  Google Scholar 

  • Yamanaka, K., Heppler, G. R. and Huseyin, K. (1996) “Stability of Gyroelastic Beams,” AIAA Journal, Vol. 34, No. 6, pp. 1270–1278.

    Google Scholar 

  • Zohar, A. and Aboudi, J. (1973) “The Free Vibrations of a Thin Circular Finite Rotating Cylinder,” International Journal of Mechanical Sciences, Vol. 15, pp. 269–278.

    Article  Google Scholar 

  • Zu, J. W. and Han, R. P. S. (1992) “Natural Frequencies and Normal Modes of a Spinning Timoshenko Beam with General Boundary Conditions,” Journal of Applied Mechanics, Trans. ASME, Vol. 59, June, pp. 197–204.

    Google Scholar 

  • Zu, J. W. and Melianson, J. (1998) “Natural Frequencies and Normal Modes for Damped Spinning Timoshenko Beam with General Boundary Conditions,” Journal of Applied Mechanics, Trans. ASME, Vol. 65, September, pp. 770–772.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

(2006). Spinning Thin-Walled Anisotropic Beams. In: Thin-Walled Composite Beams. Solid Mechanics and Its Applications, vol 131. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4203-5_10

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4203-5_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3457-2

  • Online ISBN: 978-1-4020-4203-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics