Skip to main content

Initial response of a micro-polar hypoplastic material under plane shearing

  • Chapter
Mathematics and Mechanics of Granular Materials

Abstract

The behavior of an infinite strip of a micro-polar hypoplastic material located between two parallel plates under plane shearing is investigated. The evolution equation of the stress tensor and the couple-stress tensor is described using tensor-valued functions, which are nonlinear and positively homogeneous of first order in the rate of deformation and the rate of curvature. For the initial response of the sheared layer an analytical solution is derived and discussed for different micro-polar boundary conditions at the bottom and top surfaces of the layer. It is shown that polar quantities appear within the shear layer from the beginning of shearing with the exception of zero couple stresses prescribed at the boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.K. Garga and J.A. Infante Sedano, Steady state strength of sands in a constant volume ring shear apparatus. Geotech. Testing J. 25 (2002) 414–421.

    Google Scholar 

  2. K.H. Roscoe, The influence of strains in soil mechanics, 10th Rankine Lecture. Géotechnique 20 (1970) 129–170.

    Article  Google Scholar 

  3. H.B. Mühlhaus and I. Vardoulakis, The thickness of shear bands in granular materials. Geotechnique 37 (1987) 271–283.

    Article  Google Scholar 

  4. M. Oda, Micro-fabric and couple stress in shear bands of granular materials. In: C.C. Thornton (ed.), Powders and Grains, 3. Rotterdam: Balkema (1993) pp. 161–167.

    Google Scholar 

  5. J. Desrues, R. Chambon, M. Mokni and F. Mazerolle, Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Géotechnique 46 (1996) 529–546

    Article  Google Scholar 

  6. E. Cosserat and F. Cosserat, Théorie des Corps Deformables. Herman et fils, Paris (1909).

    Google Scholar 

  7. R.D. Mindlin, Stress functions for a Cosserat continuum. Int. J. Solids Struct. 1 (1965) 265–271.

    Article  Google Scholar 

  8. A.C. Eringen, Polar and nonlocal field theories. Continuum Physics IV. New York, San Francisco, London: Academic Press (1976) 274 pp.

    Google Scholar 

  9. E.C. Aifantis, On the microstructural original of certain inelastic models. J. Engng. Mat. Technol. 106 (1984) 326–334.

    Article  Google Scholar 

  10. Z.P. Bazant, T.B. Belytschko and T.P. Chang, Continuum theory for strain softening. ASCE J. Engng. Mech. 110 (1984) 1666–1692.

    Article  Google Scholar 

  11. H.-B. Mühlhaus, Application of Cosserat theory in numerical solutions of limit load problems. Ingenieur Archiv 59 (1989) 124–137.

    Article  Google Scholar 

  12. I. Vardoulakis and E.C. Aifantis, A gradient flow theory of plasticity for granular materials. Acta Mech. 87 (1991) 197–217.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Kolymbas, An outline of hypoplasticity. Arch. Appl. Mech. 3 (1991) 143–151.

    MATH  Google Scholar 

  14. F. Darve, Incrementally non-linear constitutive relationships. In: F. Darve (ed.), Geomaterials: Constitutive Equations and Modelling. Amsterdam: Elsevier (1991) pp. 213–237.

    Google Scholar 

  15. Y.F. Dafalias, Bounding surface plasticity: I. Mathematical foundation and hypoplasticity. J. Engng. Mech., ASCE 112 (1986) 966–987.

    Article  Google Scholar 

  16. C. Truesdell and W. Noll, The non-linear field theories of mechanics. In: S. Flugge (ed.), Encyclopedia of Physics III/c. Heidelberg: Springer press (1965) pp. 1–602.

    Google Scholar 

  17. D. Kolymbas, A generalized hypoelastic constitutive law. Proc. 11th Int. Conf. Soil Mechanics and Foundation Engineering 5. Rotterdam: Balkema (1988) p. 2626.

    Google Scholar 

  18. W. Wu and E. Bauer, A simple hypoplastic constitutive model for sand. Int. J. Num. Anal. Methods Geomech. 18 (1994) 833–862.

    Article  MATH  Google Scholar 

  19. G. Gudehus, A comprehensive constitutive equation for granular materials. Soils and Foundations 36 (1996) 1–12.

    Google Scholar 

  20. E. Bauer, Calibration of a comprehensive hypoplastic model for granular materials. Soils and Foundations 36 (1996) 13–26.

    ADS  Google Scholar 

  21. P.A. von Wolffersdorff, A hypoplastic relation for granular materials with a prede.ned limit state surface. Mech. Cohesive-Frictional Materials 1 (1996) 251–271.

    Article  Google Scholar 

  22. W. Wu and D. Kolymbas, Hypoplasticity then and now. In: D. Kolymbas (ed.), Constitutive Modelling of Granular Materials. Berlin, Heidelberg, Newyork: Springer (2000) pp. 57–105.

    Google Scholar 

  23. C. Tamagnini, G. Viggiani and R. Chambon, A review of two different approaches to hypoplasticity. In: D. Kolymbas (ed.), Constitutive Modelling of Granular Materials. Berlin, Heidelberg, Newyork: Springer (2000) pp. 107–145.

    Google Scholar 

  24. E. Bauer and I. Herle, Stationary states in hypoplasticity. In: D. Kolymbas (ed.), Constitutive Modelling of Granular Materials. Berlin, Heidelberg, Newyork: Springer (2000) pp. 167–192.

    Google Scholar 

  25. J. Tejchman and E. Bauer, Numerical simulation of shear band formation with a polar hypoplastic constitutive model. Comp. Geotech. 19 (1996) 221–244.

    Article  Google Scholar 

  26. G. Gudehus, Shear localization in simple grain skeleton with polar effect. In: T. Adachi, F. Oka and A. Yashima (eds.), Proc. of the 4th Int. Workshop on Localization and Bifurcation Theory for Soils and Rocks. Rotterdam: Balkema (1998) pp. 3–10.

    Google Scholar 

  27. G. Gudehus, Attractors, percolation thresholds and phase limits of granular soils. In: R.P. Behringer and J.T. Jenkins (eds.), Powders and Grains. Rotterdam: Balkema (1997) pp. 169–183.

    Google Scholar 

  28. J. Tejchman, Modelling of shear localisation and autogeneous dynamic effects in granular bodies. Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericiaca in Karlsruhe, 140 (1997) 353 pp.

    Google Scholar 

  29. E. Bauer and W. Huang, Numerical study of polar effects in shear zones. In: G.N. Pande, S. Pietruszczak and H.F. Schweigers (eds.), Proc. of the 7th Int. Symp. on Num. Models in Geomechanics. Rotterdam: Balkema (1999) pp. 133–138.

    Google Scholar 

  30. J. Tejchman and G. Gudehus, Shearing of a narrow granular layer with polar quantities. Int. J. Num. Meth. Geomech. 25 (2001) 1–28.

    Article  MATH  Google Scholar 

  31. W. Huang, K. Nubel and E. Bauer, Polar extension of a hypoplastic model for granular materials with shear localization. Mech. Materials 34 (2002) 563–576.

    Article  Google Scholar 

  32. J. Tejchman and I. Herle, A “class A” prediction of the bearing capacity of plane strain footings on sand. Soils and Foundations 39 (1999) 47–60.

    Google Scholar 

  33. K. Nübel and R. Cudmani, Examples of finite element calculations with the hypoplastic law. In: D. Kolymbas (ed.), Constitutive Modelling of Granular Materials. Berlin, Heidelberg, Newyork: Springer (2000) pp. 523–538.

    Google Scholar 

  34. E. Bauer and W. Huang, Numerical investigation of strain localization in a hypoplstic Cosserat material under shearing. In: C.S. Desai, T. Kundu, S. Harpalani, D. Contractor and J. Kemeny (eds.), Proc. of the 10th Int. Conf. on Computer Methods and Advances in Geomechanics. Rotterdam: Balkema (2001) pp. 525–528.

    Google Scholar 

  35. G. Gudehus and K. Nübel, Evolution of shear bands in sand. Géotechnique 54 (2004) 187–201.

    Article  Google Scholar 

  36. J. Hill, Some symmetrical cavity problems for a hypoplstic granular material. Q. J. Mech. Appl. Math. 53 (2000) 111–135.

    Article  MATH  Google Scholar 

  37. E. Bauer and W. Huang, Evolution of polar quantities in a granular Cosserat material under shearing. In: H.-B. Mühlhaus, A.V. Dyskin and E. Pasternak (eds.), Proc. 5th Int. Workshop on Bifurcation and Localization Theory in Geomechanics. Rotterdam: Balkema (2001) pp. 227–238.

    Google Scholar 

  38. W. Huang, Hypoplastic Modelling of Shear Localisation in Granular Materials. Dissertation. Graz University of Technology, Austria (2000) 107 pp.

    Google Scholar 

  39. W. Wu and A. Niemunis, Failure criterion, flow rule and dissipation function derived from hypoplasticity. Mech. Cohesive-Frictional Materials 1 (1996) 145–163.

    Article  Google Scholar 

  40. W. Wu and E. Bauer, A hypoplastic model for barotropy and pyknotropy of granular soils. In: D. Kolymbas (ed.), Proc. of the Int. Workshop on Modern Approaches to Plasticity, Amsterdam Elsevier (1993) pp. 225–245.

    Google Scholar 

  41. W. Wu, E. Bauer and D. Kolymbas, Hypoplastic constitutive model with critical state for granular materials. Mech. Materials 23 (1996) 45–69.

    Article  Google Scholar 

  42. W. Wu, E. Bauer, A. Niemunis and I. Herle, Visco-hypoplastic models for cohesive soils. In: D. Kolymbas (ed.), Proc. of the Int. Workshop on Modern Approaches to Plasticity, Amsterdam: Elsevier (1993) pp. 365–383.

    Google Scholar 

  43. G. Gudehus, Hypoplastic shear localisation in psammoids and peloids. 2nd Int. Symposium on Continuous and Discontinuous Modelling of Cohesive Frictional Materials, Publication in print (2004).

    Google Scholar 

  44. W. Wu, Rational approach to anisotropy of sand. Int. J. Num Anal. Methods in Geomech. 24 (1998) 921–940.

    Article  Google Scholar 

  45. E. Bauer, W. Wu and W. Huang, Influence of initially transverse isotropy on shear banding in granular materials. In: J.F. Labuz and A. Arescher (eds.), Proc. of the Int. Workshop on Bifurcation and Instabilities in Geomechanics. Rotterdam: Balkema (2003) pp. 161–172.

    Google Scholar 

  46. E. Bauer and W. Wu, Extension of Hypoplastic Constitutive Model with Respect to Cohesive Powders. In: H.J. Siriwardane and M.M. Zadan (eds.), Proc. of the Eighth Intern. Conf. on Computer Methods and Advances in Geomechanics. Rotterdam: Balkema (1994) pp. 531–536.

    Google Scholar 

  47. A. Niemunis and I. Herle, Hypoplastic model for cohesionless soils with elastic strain range. Mech. Cohesive-Frictional Materials 2 (1997) 279–299.

    Article  Google Scholar 

  48. A.E. Green and P.M. Naghdi, A general Theory of an elastic-plastic continuum. Arch. Rat. Mech. Anal. 18 (1965) 251–281.

    Article  MathSciNet  Google Scholar 

  49. W. Huang and E. Bauer, Numerical investigations of shear localization in a micro-polar hypoplastic material. Int. J. Num. Anal. Meth. Geomech. 27 (2003) 325–352.

    Article  MATH  Google Scholar 

  50. H. Matsuoka and T. Nakai, Stress-strain relationship of soil based on the ’sMP’. Proc. of Speciality Session 9, IX Int. Conf. Soil Mech. Found. Eng., Tokyo (1977) pp. 153–162.

    Google Scholar 

  51. E. Bauer, Conditions for embedding Casagrande’s critical states into hypoplasticity. Mech. Cohesive-Frictional Materials 5 (2000) 125–148.

    Article  Google Scholar 

  52. W. Huang, E. Bauer and S. Sloan, Behaviour of interfacial layer along granular soil-structure interfaces. Struct. Engng. Mech. 15 (2003) 315–329.

    Google Scholar 

  53. G. Gudehus, Forced and spontaneous polarisation in shear zones. In: H.-B. Mühlhaus, A. V. Dyskin and E. Pasternak (eds.), Proc. 5th Int. Workshop on bifurcation and Localization Theory in Geomechanics, Rotterdam: Balkema (2001) pp. 45–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Bauer, E. (2005). Initial response of a micro-polar hypoplastic material under plane shearing. In: Hill, J.M., Selvadurai, A. (eds) Mathematics and Mechanics of Granular Materials. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4183-7_3

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4183-7_3

  • Received:

  • Accepted:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3781-8

  • Online ISBN: 978-1-4020-4183-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics