Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.A. Coulomb, Essai sur une application des règles de maximis & minimis à quelques problèmes de statique, relatifs à l’architecture, Mémoire de Mathématique & de Physique, présentés à l’ Académie Royale des Sciences par divers Savans, & lûs dans ses Assemblées, Vol. 7,1773, Paris (1776) pp. 343–382.

    Google Scholar 

  2. J. Heyman, Coulomb’s Memoir on Statics. Cambridge: Cambridge University Press (1972) 212 pp.

    MATH  Google Scholar 

  3. D.C. Drucker and W. Prager, Soil mechanics and plastic analysis or limit design. Q. Appl. Math. 10 (1952) 157–165.

    MathSciNet  MATH  Google Scholar 

  4. D.C. Drucker, R.E. Gibson and D.J. Henkel, Soil mechanics and work-hardening theories of plasticity. Trans. ASCE 122 (1957) 338–346

    Google Scholar 

  5. A.W. Jenike and R.T. Shield, On the plastic flow of Coulomb solids beyond original failure. J. Appl. Mech. 26 (1959) 599–602.

    MathSciNet  MATH  Google Scholar 

  6. A. Schofield and P. Wroth, Critical State Soil Mechanics. London: McGraw-Hill (1968) 310 pp.

    Google Scholar 

  7. R. Hill, The Mathematical Theory of Plasticity. Oxford: Clarendon Press (1950) 355 pp.

    MATH  Google Scholar 

  8. A.J.M. Spencer, A theory of the kinematics of ideal soils under plane strain conditions. J. Mech. Phys. Solids 12 (1964) 337–351.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. A.J.M. Spencer, Deformation of ideal granular materials. In: H.G. Hopkins and M.J. Sewell (eds.), Mechanics of Solids. Oxford: Pergamon Press (1982) pp. 607–652.

    Google Scholar 

  10. M.M. Mehrabadi and S.C. Cowin, Initial planar deformation of dilatant granular materials. J. Mech. Phys. Solids 26 (1978) 269–284.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. R. Butterfield and R.M. Harkness, The kinematics of Mohr-Coulomb materials. In: R.H.G. Parry (ed.), Stress-Strain Behaviour of Soils. Henley: Foulis (1972) pp. 220–281.

    Google Scholar 

  12. G. de Josselin de Jong, Statics and Kinematics of the Failable Zone of a Granular Material. Doctoral thesis. Delft: Uitgeverij Waltman (1959).

    Google Scholar 

  13. G. de Josselin de Jong, Mathematical elaboration of the double-sliding, free-rotating model. Archs. Mech. 29 (1977) 561–591.

    MATH  Google Scholar 

  14. G. de Josselin de Jong, Elasto-plastic version of the double-sliding model in undrained simple shear tests. Geotechnique 38 (1988) 533–555.

    Article  Google Scholar 

  15. A.J.M. Spencer, Remarks on coaxiality in fully developed gravity flows of dry granular materials. In: N.A. Fleck and A.C.F. Cocks (eds.), Mechanics of Granular and Porous Materials. Dordrecht: Kluwer (1997) pp. 227–238.

    Google Scholar 

  16. A.J.M. Spencer and N.J. Bradley, Gravity flow of granular materials in contracting cylinders and tapered tubes. Int.J.Eng.Sci. 40 (2002) 1529–1552.

    Article  Google Scholar 

  17. A.J.M. Spencer, Instability of steady flow of granular materials. Acta Mech. 64 (1986) 77–87.

    Article  MATH  Google Scholar 

  18. D.G. Schaeffer, Instability in the evolution equations describing incompressible granular flow. J. Diff. Eqns. 66 (1987) 19–50.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Harris, Ill-and well-posed models of granular flow. Acta Mech. 146 (2001) 199–225.

    Article  MATH  Google Scholar 

  20. D. Harris, Modelling mathematically the flow of granular materials. In: N.A. Fleck and A.C.F. Cocks (eds.), Mechanics of Granular and Porous Materials. Dordrecht: Kluwer (1997) pp. 239–250.

    Google Scholar 

  21. D. Harris, Discrete and continuum models in the mechanics of granular materials. In: R.P. Behringer, and J.T. Jenkins. (eds.), Powders and Grains 97. Rotterdam: A.A. Balkema (1997) pp. 247–250

    Google Scholar 

  22. R. Jyotsna and K.K. Rao, A frictional-kinetic model for the flow of granular materials through a wedge-shaped hopper. J. Fluid Mech. 346 (1997) 239–270.

    Article  ADS  MATH  Google Scholar 

  23. L.S. Mohan, P.R. Nott and K.K. Rao, Fully developed flow of coarse granular materials through a vertical channel. Chem. Engng. Sci. 52 (1997) 913–933.

    Article  Google Scholar 

  24. S.B. Savage, Analyses of slow high-concentration flows of granular materials. J. Fluid Mech. 377 (1998) 1–26.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. G.I. Tardos, S. McNamara and I. Talu, Slow and intermediate flow of a frictional bulk powder in the Couette geometry. Powder Tech. 131 (2003) 23–39.

    Article  Google Scholar 

  26. S. Chapman and T.G. Cowling, The Mathematical Theory of Non-Uniform Gases. Cambridge: Cambridge University Press (1970) 423 pp.

    Google Scholar 

  27. W. Voigt, Theoretische Studien über Elastizitätsverhältnisse der Kristalle. Abh. Ges. Wiss., Gottingen. 34 (1887).

    Google Scholar 

  28. E. Cosserat and F. Cosserat, Theorie des Corps Deformables, Paris: A. Herman et Fils (1909) vi, p. 226.

    Google Scholar 

  29. A.P.S. Selvadurai, Bending of an infinite beam on a porous elastic medium. Geotechnique 23 (1973) 407–421.

    Article  Google Scholar 

  30. E. Kröner (Ed.), Mechanics of Generalized Continua, Proc. IUTAM Symposium, Stuttgart and Freudenstadt. Berlin: Springer-Verlag (1968) 358 pp.

    Google Scholar 

  31. I. Vardoulakis and J. Sulem, Bifurcation Analysis in Geomechanics. London: Blackie Academic and Professional (1995) 462 pp.

    Google Scholar 

  32. H.B. Mühlhaus, Shear band analysis in granular materials by Cosserat theory. Ing. Arch. 56 (1986) 389–399.

    Article  Google Scholar 

  33. J. Tejchman and W. Wu, Numerical study of patterning of shear bands in a Cosserat continuum. Acta Mech. 99 (1993) 61–74.

    Article  MATH  Google Scholar 

  34. E. Bauer, Calibration of a comprehensive constitutive equation for granular materials. Soils and Foundations 36 (1996) 13–26.

    ADS  Google Scholar 

  35. J. Tejchman and E. Bauer, Numerical simulation of shear band formation with a polar hypoplastic constitutive model. Computers and Geotechnics 19 (1996) 221–244.

    Article  Google Scholar 

  36. J. Tejchman and G. Gudehus, Shearing of a narrow granular layer with polar quantities. Int. J. Numer. Anal. Meth. Geomech. 25 (2001) 1–28.

    Article  MATH  Google Scholar 

  37. L.S. Mohan, P.R. Nott and K.K. Rao, A frictional Cosserat model for the flow of granular materials through a vertical channel. Acta Mech. 138 (1999) 75–96.

    Article  MATH  Google Scholar 

  38. L.S. Mohan, K.K. Rao and P.R. Nott, A frictional Cosserat model for the slow shearing of granular materials. J. Fluid Mech. 457 (2002) 377–409.

    MathSciNet  ADS  MATH  Google Scholar 

  39. R.O. Davis and A.P.S. Selvadurai, Plasticity and Geomechanics. Cambridge: Cambridge University Press (2002), 287 pp.

    Book  Google Scholar 

  40. C. Truesdell, Hypo-elasticity. J. Rational Mech. Anal. 4 (1955) 83–133, 1019–1020.

    MathSciNet  MATH  Google Scholar 

  41. A.E. Green, Hypo-elasticity and Plasticity. Proc. R. Soc. London A. 234 (1956) 46–59.

    Article  MATH  ADS  Google Scholar 

  42. A.E. Green, Hypo-elasticity and Plasticity II. J. Rational Mech. Anal. 5 (1956) 637–642.

    MathSciNet  MATH  Google Scholar 

  43. C. Truesdell and W. Noll, The Non-Linear Field Theories of Mechanics. Handbuch der Physik, Vol. III/3 (S. Flugge, Ed.). Berlin: Springer-Verlag (1965) 602 pp.

    Google Scholar 

  44. W. Jaunzemis, Continuum Mechanics. New York: The Macmillan Co (1967) 604 pp.

    MATH  Google Scholar 

  45. D. Kolymbas, A novel constitutive law for soils, In: C.S. Desai (eds.), Proceedings of the Second International Conference on Constitutive Laws for Engineering Materials. Amsterdam: Elsevier (1987) pp. 319–326.

    Google Scholar 

  46. G. Gudehus, A comprehensive constitutive equation for granular materials. Soils and Foundations 36 (1996) 1–12.

    Google Scholar 

  47. W. Wu, Hypoplasticity as a Mathematical Model for the Mechanical Behaviour of Granular Materials. Publication Series of the Institute for Soil and Rock Mechanics, No. 129. Germany: University of Karlsruhe (1992).

    Google Scholar 

  48. W. Wu, E. Bauer and D. Kolymbas, Hypoplastic constitutive model with critical state for granular materials. Mech. Mater. 23 (1996) 45–69.

    Article  Google Scholar 

  49. D. Kolymbas, Introduction to hypoplasticity. In: Advances in Geotechnical Engineering and Tunnelling, Vol. 1. Rotterdam: A.A. Balkema (2000) 94 pp.

    Google Scholar 

  50. W. Wu and D. Kolymbas, Hypoplasticity, then and now. In: D. Kolymbas (ed.), Constitutive Modelling of Granular Materials. Berlin: Springer Verlag (2000) pp. 57–105.

    Google Scholar 

  51. J.M. Hill and T.L. Katoanga, The velocity equations for dilatant granular flow and a new exact solution. ZAMP 48 (1997) 1–8.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. J.M. Hill, Similarity ‘hot-spot’ solutions for a hypoplastic granular material. Proc. R. Soc. London A 456 (2000) 2653–2671.

    ADS  Google Scholar 

  53. J.M. Hill, Some symmetrical cavity problems for a hypoplastic granular material. Q. J. Mech. Appl. Math. 53 (2000) 111–135.

    Article  MATH  Google Scholar 

  54. J.M. Hill and K.A. Williams, Dynamical uniaxial compaction of a hypoplastic granular material. Mech. Mater. 32 (2000) 679–691.

    Article  Google Scholar 

  55. W. Wu and A. Niemunis, Failure criterion, flow rule and dissipation function derived from hypoplasticity. Mech. Cohesive-Frict. Mater. 1 (1996) 145–163.

    Article  Google Scholar 

  56. P.-A. von Wolffersdorff, A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohesive-Frict. Mater. 1 (1996) 251–271

    Article  Google Scholar 

  57. H. Matsuoka and T. Nakai, Stress-strain relationship of soil based on the SMP. In: Proceedings of Specialty Session 9, 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo (1997) pp. 153–162.

    Google Scholar 

  58. A.J.M. Spencer, Double-shearing theory applied to instability and strain localization in granular materials. J. Engng. Math. 45 (2003) 55–74.

    Article  MATH  Google Scholar 

  59. J.W. Rudnicki and J. Rice, Conditions for the localization of deformation in pressure sensitive dilatant materials. J. Mech. Phys. Solids 23 (1975) 371–394.

    Article  ADS  Google Scholar 

  60. W. Huang and E. Bauer, Numerical investigations of shear localization in a micro-polar hypoplastic material. Int. J. Numer. Anal. Meth. Geomech. 27 (2003) 325–352.

    Article  MATH  Google Scholar 

  61. S.C. Cowin and M. Satake (eds.), Continuum Mechanical and Statistical Approaches in the Mechanics of Granular Materials, Proc. U.S.-Japan Seminar, Sendai. Tokyo: Gakujutsu Bunken Fukyu-Kai (1978) 350 pp.

    Google Scholar 

  62. P. Vermeer and H.J. Luger (eds.), Deformation and Failure of Granular Materials. Proc. IUTAM Symposium, Delft. Rotterdam: A.A. Balkema (1982) 661 pp.

    Google Scholar 

  63. J.T. Jenkins and M. Satake (eds.), Mechanics of Granular Materials. New Models and Constitutive Relations. Proc. U.S./Japan Seminar, Ithaca, N.Y. Studies in Applied Mechanics, Vol.7. Amsterdam: Elsevier (1983) 364 pp.

    Google Scholar 

  64. M. Shahinpoor (ed.), Advances in the Mechanics and Flow of Granular Materials. Reston, VA: Gulf Publ. Co. (1983) 975 pp.

    Google Scholar 

  65. M. Satake (ed.), Micromechanics of Granular Materials. Proc. US-Japan Seminar, Sendai-Zao. Amsterdam: Elsevier (1988) 366 pp.

    Google Scholar 

  66. B.L. Keyfitz and M. Shearer (eds.), Nonlinear Evolution Equations that Change Type. Berlin: Springer Verlag (1991) 284 pp.

    Google Scholar 

  67. H. Shen, C.S. Campbell, M. Mehrabadi, C.S. Chang, and M. Satake (eds.), Advances in Micromechanics of Granular Materials. Proc. 2nd US/Japan Seminar, Potsdam. Amsterdam: Elsevier (1992) 462 pp.

    Google Scholar 

  68. M. Mehrabadi (ed.), Mechanics of Granular Materials and Powder Systems. New York: ASME (1992) 152 pp

    Google Scholar 

  69. C.S. Chang (ed.), Advances in Micromechanics of Granular Materials. Amsterdam: Elsevier (1992) 462 pp.

    Google Scholar 

  70. D. Bideau and A. Hansen (eds.), Disorder and Granular Media. Random Materials and Processes Series. The Netherlands: North Holland (1993) 348 pp.

    Google Scholar 

  71. N.A. Fleck and A.F.C. Cocks (eds.), IUTAM Symposium on Mechanics of Granular and Porous Materials. Dordrecht: Kluwer (1997) 450 pp.

    Google Scholar 

  72. H.J. Herrmann, J.-P. Hovi and S. Luding (eds.), Physics of Dry Granular Media. Dordrecht: Kluwer (1998) 710 pp.

    MATH  Google Scholar 

  73. D.A. Drew, D.D. Joseph and S. Passman (eds.), Particulate Flows. Processing and Rheology. Berlin: Springer-Verlag (1998) 142 pp.

    MATH  Google Scholar 

  74. K.M. Golden, G.R. Grimmett, R.D. James, G.W. Milton and P.N. Sen (eds.), Mathematics of Multi-Scale Materials. Berlin: Springer-Verlag (1998) 280 pp.

    Google Scholar 

  75. P. Vermeer, S. Diebels, W. Ehlers, H.J. Herrmann, S. Luding and E. Ramm (eds.), Continuous and Discontinuous Modelling of Cohesive-Frictional Materials. Berlin: Springer-Verlag (2001) 307 pp

    MATH  Google Scholar 

  76. T. Pöschel and S. Luding (eds.), Granular Gases. Berlin: Springer Verlag (2001) 457 pp.

    Google Scholar 

  77. G. Capriz, V.N. Ghionna and P. Giovine (eds.), Modeling and Mechanics of Granular and Porous Materials. Boston: Birkhauser (2002) 369 pp.

    MATH  Google Scholar 

  78. H. Hinrichsen and D.E. Wolf (eds.), The Physics of Granular Media. New York: John Wiley (2005) 364 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Hill, J., Selvadurai, A. (2005). Mathematics and mechanics of granular materials. In: Hill, J.M., Selvadurai, A. (eds) Mathematics and Mechanics of Granular Materials. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4183-7_1

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4183-7_1

  • Received:

  • Accepted:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3781-8

  • Online ISBN: 978-1-4020-4183-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics