Skip to main content

THE NEAR-WALL STRUCTURES OF TURBULENT WALL FLOWS

  • Conference paper

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 79))

Abstract

Models for the viscous and buffer layers over smooth walls are reviewed. It is shown that there is a family of numerically-exact nonlinear structures which account for about half of the energy production and dissipation in the wall layer. The other half can be modelled by the unsteady bursting of those structures. Many of the best-known characteristics of the wall layer, such as the lateral spacing among the streaks, are well predicted by these models. The limitations of minimal models are then discussed, and it is noted that a better approximation is to represent the velocity streaks as ‘semi-infinite’ wakes of the wall-normal velocity structures, both in the buffer and in the logarithmic layer. The consequences of this characterization on the causal relation between bursting structures are also briefly discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ADRIAN, R.J., MEINHART, C.D. & TOMKINS, C.D. 2000 Vortex organization in the outer region of the turbulent boundary layer, J. Fluid Mech. 422, 1–54.

    Article  MathSciNet  Google Scholar 

  • DEL ÁLAMO, J.C. & JIMÉNEZ, J. 2003 Spectra of very large anisotropic scales in turbulent channels, Phys. Fluids 15 L41–L44.

    Article  Google Scholar 

  • DEL ÁLAMO, J.C., JIMÉNEZ, J., ZANDONADE, P. & MOSER, R.D. 2004 Scaling of the energy spectra of turbulent channels, J. Fluid Mech. 500, 135–144.

    Article  Google Scholar 

  • DEL Á, J.C., JIMÉNEZ, J., ZANDONADE, P. & MOSER, R.D. 2005 Attached and detached vortex clusters in the logarithmic region, submitted J. Fluid Mech.

    Google Scholar 

  • AUBRY, N., HOLMES, P., LUMLEY, J.L. & STONE, E. 1988 The dynamics of coherent structures in the wall region of a turbulent boundary layer, J. Fluid Mech. 192, 115–173.

    Article  MathSciNet  Google Scholar 

  • BAKEWELL, H. P. & LUMLEY, J. L. 1967 Viscous sublayer and adjacent wall region in turbulent pipe flow. Phys. Fluids 10, 1880–1889.

    Article  Google Scholar 

  • CHONG, M.S., PERRY, A.E. & CANTWELL, B.J. 1990 A general classification of three-dimensional flow fields, Phys. Fluids A 2, 765–777.

    MathSciNet  Google Scholar 

  • CHRISTENSEN, K.T. & ADRIAN, R.J. 2001 Statistical evidence of hairpin vortex packets in wall turbulence, J. Fluid Mech. 431, 433–443.

    Article  Google Scholar 

  • FRIC, T.F. & ROSHKO, A. 1994 Vortical structure in the wake of a transverse jet, J. Fluid Mech. 279, 1–47.

    Article  Google Scholar 

  • HAMILTON, J. M., KIM, J. & WALEFFE, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317–348.

    Article  Google Scholar 

  • JEONG, J., HUSSAIN,F., SCHOPPA,W. & KIM, J. 1997 Coherent structures near the wall in a turbulent channel flow. J. Fluid Mech. 332, 185–214.

    Google Scholar 

  • JIMÉNEZ, J. 1998 The largest structures in turbulent wall flows. In CTR Annual Research Briefs, 943–945. Stanford University.

    Google Scholar 

  • JIMÉNEZ, J. 2004 Turbulent flows over rough walls, Ann. Rev. Fluid Mech. 36, 173–196.

    Article  MATH  Google Scholar 

  • JIMÉNEZ, J., DEL Á, J.C. & FLORES, O. 2004 The large-scale dynamics of near-wall turbulence, J. Fluid Mech. 505, 179–199.

    Article  Google Scholar 

  • JIMÉNEZ, J., KAWAHARA, G., SIMENS, M.P., NAGATA, M. & SHIBA, M. 2004 Characterization of near-wall turbulence in terms of equilibrium and ‘bursting’ solutions, Phys. Fluids 17, 015105.1–16.

    Google Scholar 

  • JIMÉNEZ, J. & MOIN, P. 1991 The minimal flow unit in near wall turbulence. J. Fluid Mech. 225, 221–240.

    Article  Google Scholar 

  • JIMÉNEZ, J. & PINELLI, A. 1999 The autonomous cycle of near wall turbulence, J. Fluid Mech. 389, 335–359.

    Article  MathSciNet  Google Scholar 

  • JIMÉNEZ, J. & SIMENS, M.P. 2001 Low-dimensional dynamics in a turbulent wall flow, J. Fluid Mech. 435,81–91.

    Article  Google Scholar 

  • KAWAHARA, G., JIMÉNEZ, J., UHLMANN, M. & PINELLI, A. 2003 Linear instability of a corrugated vortex sheet–a model for streak instability, J. Fluid Mech. 483 315–342.

    Google Scholar 

  • KAWAHARA, G. & KIDA, S. 2001 Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst, J. Fluid Mech. 449, 291–300.

    MathSciNet  Google Scholar 

  • KIM, K. C & ADRIAN, R. J. 1999 Very large-scale motion in the outer layer. Phys. Fluids A 11, 417–422.

    Article  MathSciNet  Google Scholar 

  • KIM, J. & HUSSAIN, F. 1993 Propagation velocity of perturbations in channel flow. Phys. Fluids A 5, 695–706.

    Google Scholar 

  • KIM, H.T., KLINE, S.J. & REYNOLDS, W.C. 1971 The production of turbulence near a smooth wall in a turbulent boundary layers, J. Fluid Mech. 50, 133–160.

    Article  Google Scholar 

  • KIM, J., MOIN, P. & MOSER, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166.

    Article  Google Scholar 

  • LAWN, C. J. 1971 The determination of the rate of dissipation in turbulent pipe flow, J. Fluid Mech 48, 477–505.

    Article  Google Scholar 

  • MORRISON, W.R.B., BULLOCK, K.J. & KRONAUER, R.E. 1971 Experimental evidence of waves in the sublayer. J. Fluid Mech. 47, 639–656.

    Article  Google Scholar 

  • NAGATA, M. & BUSSE, F.H. 1983 Three-dimensional tertiary motions in a plane shear flow, J. Fluid Mech. 135, 1–26.

    Article  Google Scholar 

  • NAGATA, M. 1990 Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity, J. Fluid Mech. 217, 519–527.

    Article  MathSciNet  Google Scholar 

  • OFFEN, G.R. & KLINE, S.J. 1975 A proposed model for the bursting process in turbulent boundary layers, J. Fluid Mech. 70, 209–228.

    Article  Google Scholar 

  • ÖSTERLUND, J.M., JOHANSSON, A.V., NAGIB, H.M. & HITES 2000 A note on the overlap region in turbulent boundary layers, Phys. Fluids 12, 1–4.

    Article  Google Scholar 

  • PERRY, A.E., HENBEST, S. & CHONG, M.S. 1986 A theoretical and experimental study of wall turbulence. J. Fluid Mech 165, 163–199.

    Article  MathSciNet  Google Scholar 

  • REDDY, S.C., SCHMID, P.J., BAGGETT, J.S. & HENNINGSON, D.S. 1998 On stability of streamwise streaks and transition thresholds in plane channel flows. J. Fluid Mech. 365, 269–303.

    Article  MathSciNet  Google Scholar 

  • ROBINSON, S.K. 1991 Coherent motions in the turbulent boundary layer. Ann. Rev. Fluid Mech. 23, 601–639.

    Article  Google Scholar 

  • SCHOPPA, W. & HUSSAIN, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57–108.

    Article  MathSciNet  Google Scholar 

  • SIROVICH, L. & ZHOU, X. 1994 Dynamical model of wall-bounded turbulence. Phys. Rev. Lett. 72, 340–343.

    Article  Google Scholar 

  • SMITH, C.R. & METZLER, S.P. 1983 The characteristics of low speed streaks in the near wall region of a turbulent boundary layer. J. Fluid Mech. 129, 27–54.

    Article  Google Scholar 

  • SWEARINGEN, J.D. & BLACKWELDER, R.F. 1987 The growth and breakdown of streamwise vortices in the presence of a wall. J. Fluid Mech. 182, 255–290.

    Article  Google Scholar 

  • TANAHASHI, M., KANG, S.-J., MIYAMOTO, T., SHIOKAWA, S. & MIYAUCHI, T. 2004 Scaling law of fine scale eddies in turbulent channel flows up to Ret = 800. Int. J. Heat and Fluid Flow 25, 331–340.

    Article  Google Scholar 

  • TENNEKES, H. & LUMLEY, J.L. 1972 A first course in turbulence, chapter 8. MIT Press. TOH, S. & ITANO, T. 2001 On the regeneration mechanism of turbulence in the channel flow, Proc. Iutam Symp. on Geometry and Statistics of Turbulence. (eds. T. Kambe, T. Nakano and T. Muiyauchi), Kluwer. 305–310.

    Google Scholar 

  • TOH, S. & ITANO, T. 2003 A periodic-like solution in channel flow, J. Fluid Mech. 481, 67–76.

    Article  MathSciNet  Google Scholar 

  • WALEFFE, F. 1997 On a self-sustaining process in shear flows, Phys. Fluids 9, 883–900.

    Article  Google Scholar 

  • WALEFFE, F. 1998 Three-dimensional coherent states in plane shear flows. Phys. Rev. Letters 81, 4140–4143.

    Article  Google Scholar 

  • WALEFFE, F. 2001 Exact coherent structures in channel flow, J. Fluid Mech. 435, 93–102.

    Article  MATH  Google Scholar 

  • WALEFFE, F. 2003 Homotopy of exact coherent structures in plane shear flows, Phys. Fluids 15, 1517–1534.

    Article  MathSciNet  Google Scholar 

  • ZHOU, J., ADRIAN, R.J., BALACHANDER, S. & KENDALL, T.M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow, J. Fluid Mech. 397, 353–396.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Jiménez, J., Kawahara, G., Simens, M.P., del Álamo, J.C. (2006). THE NEAR-WALL STRUCTURES OF TURBULENT WALL FLOWS. In: KIDA, S. (eds) IUTAM Symposium on Elementary Vortices and Coherent Structures: Significance in Turbulence Dynamics. Fluid Mechanics and Its Applications, vol 79. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4181-0_6

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4181-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4180-8

  • Online ISBN: 978-1-4020-4181-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics