Skip to main content

INVARIANTS, DIFFUSION AND TOPOLOGICAL CHANGE IN INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

  • Conference paper
  • 783 Accesses

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 79))

Abstract

We discuss the effect that the presence of a small viscosity has on the evolution of fields that are transported unchanged in the absence of viscosity. We employ a diffusive Lagrangian formulation and show that the Cauchy invariant, the helicity density, the Jacobian determinant, and the virtual velocity obey parabolic equations that are well-behaved as long as the diffusive transformations are invertible. We call such quantities diffusive Lagrangian. We showby numerical calculations that the loss of invertibility of the diffusive transformation can occur, and that the time scale on which it does can be short even when the viscosity is small. We present quantitative evidence relating the loss of invertibility to the physical phenomenon of vortex reconnection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold, V. I.& Khesin, B. A. 1998, Topological methods in Hydrodynamics, Applied Mathematical Sciences, 125, Springer-Verlag, New York.

    Google Scholar 

  • Buttke, T. 1993 Lagrangian numerical methods which preserve the Hamiltonian structure of incompressible fluid flow, in Vortex flows and related numerical methods, Beale,J.T. & Cottet, G.H. & Huberson, S.(Eds), NATO ASI Series, Vol. 395, Kluwer, Norwell.

    Google Scholar 

  • Buttke, T.& Chorin, A. 1993 Turbulence calculations in magnetization variables, Appl. Num. Math. 12, 47–54.

    Article  MathSciNet  Google Scholar 

  • Chorin, A. 1994 Vorticity and Turbulence, Applied Mathematical Sciences 103, Springer-Verlag.

    Google Scholar 

  • Chorin, A. 1973 Numerical study of slightly viscous flow, J. Fluid. Mech 57 (1973), 785–796.

    Article  MathSciNet  Google Scholar 

  • Clebsch, A. 1858 Uber die integration der hydrodynamischen Gleichungen, J. Reine Angew. Math. 58, 1–10.

    Google Scholar 

  • Constantin, P. 1994 Geometric and analytic studies in turbulence, in Trends and Perspectives in Appl. Math., Sirovich, L. ed., Appl. Math. Sciences 100, Springer-Verlag.

    Google Scholar 

  • Constantin, P. 2001 An Eulerian-Lagrangian approach for incompressible fluids: local theory, Journal of the AMS, 14, 263–278.

    MATH  MathSciNet  Google Scholar 

  • Constantin, P. 2001 An Eulerian-Lagrangian approach to the Navier-Stokes equations, Commun. Math. Phys. 216, 663–686.

    Article  MATH  MathSciNet  Google Scholar 

  • Constantin, P. 2003 Near identity transformations for the Navier-Stokes equations, in Handbook of Mathematical Fluid Dynamics, Volume 2, Friedlander, S. and Serre, D. Edtrs, Elsevier.

    Google Scholar 

  • Constantin, P. & E, W. & Titi, E. 1994 Onsager’s conjecture on the energy conservation for solutions of Euler’s equations, Commun. Math. Phys., 165 207–209.

    Article  MathSciNet  Google Scholar 

  • Constantin, P. & Fefferman, C. 1993 Direction of vorticity and the problem of global regularity for the Navier-Stokes equations, Indiana Univ. Math. Journal, 42 775–794.

    Article  MathSciNet  Google Scholar 

  • Eyink, G. 1994 Energy dissipation without viscosity in the ideal hydrodynamics, I. Fourier analysis and local energy transfer, Phys. D 3–4, 222–240.

    Article  MathSciNet  Google Scholar 

  • Foias, C. & Temam, R. 1989 Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal. 87, 359–369.

    Article  MathSciNet  Google Scholar 

  • Kuzmin, G.A. 1983 Ideal incompressible hydrodynamics in terms of momentum density, Phys. Lett. A 96, 88–90.

    Article  Google Scholar 

  • H. Lamb, Hydrodynamics, Cambridge University Press, Cambridge, 1932.

    Google Scholar 

  • Moffatt, H.K. 1969 The degree of knottedness of tangled vortex lines, J. Fluid Mech., 35, 117–129.

    Article  MATH  Google Scholar 

  • Onsager 1949, Statistical Hydrodynamics, Nuovo Cimento 6(2), 279–287.

    MathSciNet  Google Scholar 

  • Ohkitani, K. & Constantin,P. 2003 Numerical study of the Eulerian-Lagrangian formulation of the Navier-Stokes equations, Phys. Fluids 15–10, 3251–3254.

    Article  MathSciNet  Google Scholar 

  • Ohkitani, K. & Constantin, P. 2005 Numerical study of the Eulerian-Lagrangian analysis of the Navier-Stokes turbulence, work in preparation.

    Google Scholar 

  • Oseledets, V.I. 1989 On a new way of writing the Navier-Stokes equation. The Hamiltonian formalism. Commun. Moscow Math. Soc (1988), Russ. Math. Surveys 44, 210–211.

    Article  MATH  MathSciNet  Google Scholar 

  • Roberts, P.H. 1972 A Hamiltonian theory for weakly interacting vortices, Mathematica 19, 169–179.

    MATH  Google Scholar 

  • Weber, W. 1868 Uber eine Transformation der hydrodynamischen Gleichungen, J. Reine Angew. Math. 68, 286–292.

    MATH  Google Scholar 

  • Zakharov, V.E. & Kuznetsov, E.A. 1970 Variational principle and canonical variables in magne-tohydrodynamics, Doklady Akademii Nauk SSSR 194, 1288–1289.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Constantin, P., Ohkitani, K. (2006). INVARIANTS, DIFFUSION AND TOPOLOGICAL CHANGE IN INCOMPRESSIBLE NAVIER-STOKES EQUATIONS. In: KIDA, S. (eds) IUTAM Symposium on Elementary Vortices and Coherent Structures: Significance in Turbulence Dynamics. Fluid Mechanics and Its Applications, vol 79. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4181-0_35

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4181-0_35

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4180-8

  • Online ISBN: 978-1-4020-4181-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics