Skip to main content

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 79))

Abstract

Pressure fluctuation is measured by using a condenser microphone and piezoresistive transducer. In order to confirm the experimental accuracy, measured data are compared with direct numerical simulation. This basic test encourages us to study small-scale statistics from the standpoint of Kolmogorov universal scaling. The power-law exponent and proportional constant of normalized pressure spectrum are discussed. The clear power law with scaling exponent –7/3 is confirmed in the range of Rλ ≥ 600. These Reynolds numbers are much larger than those in velocity fluctuation for achieving the Kolmogorov scaling. The spectral constant K p is not universal but depends on Reynolds number.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ALBERTSON, J. D., KATUL, G. G., PARLANGE, M. B., AND EICHINGER, W. E. 1998, Spectral Scaling of Static Pressure Fluctuations in the Atmospheric Surface Layer: The Interaction between Large and Small Scales, Physics of Fluids, 10, 1725-1731.

    Google Scholar 

  • BATCHELOR, G. K. 1951, Pressure Fluctuations in Isotropic Turbulence, Proc. Camb. Phil. Soc., 47, 359–374.

    Article  MATH  MathSciNet  Google Scholar 

  • CAO, N., CHEN, S. & DOOLEN, G. D. 1999, Statistics and Structures of Pressure in Isotropic Turbulence, Phys. of Fluids, 11, 2235–2250.

    Article  MathSciNet  MATH  Google Scholar 

  • DOUADY, S., COUDER, Y. & BRACHET, M. E. 1991, Direct Observation of the Intermit-tency of Intense Vorticity Filaments in Turbulence, Physical Rev. Lett., 67 983–986.

    Article  Google Scholar 

  • ELLIOTT, J. A. 1972, Microscale Pressure Fluctuations Measured within the Lower Atmospheric Boundary Layer, J. Fluid Mech., 53, 351–383.

    Article  Google Scholar 

  • GOTOH, T. & FUKAYAMA, D. 2001, Pressure Spectrum in Homogeneous Turbulence, Phys. Rev. Lett., 86 3775–3778.

    Article  Google Scholar 

  • GEORGE, W. K., BEUTHER, P. D. AND ARNDT, R. E. A. 1984, Pressure Spectra in Turbulent Free Shear Flows, J. Fluid Mech. 148, 155–191.

    Article  MATH  Google Scholar 

  • HINZE, O. 1975, Turbulence. McGraw-Hill, New York.

    Google Scholar 

  • INOUE, E. 1951, The Application of the Turbulence Theory to the Large-scale Atmospheric Phenomena, Geophys. Mag., 23, 1–14.

    Google Scholar 

  • ISHIHARA, T., KANEDA, Y., YOKOKAWA, M., ITAKURA, K. & UNO, A. 2003, Spectra of Energy Dissipation, Enstrophy and Pressure by High-Resolution Direct Numerical Simulations of Turbulence in a Periodic Box, J. Phys. Soc. Jpn., 72, 983–986.

    Article  Google Scholar 

  • JONES, B. G., ADRIAN, R. J., NITHIANANDAN, C. K., PLANCHON JR., H. P., 1979, Spectra of Turbulent Static Pressure Fluctuations in Jet Mixing Layers, AIAA Journal, 17, 449–457.

    Article  Google Scholar 

  • KOBASHI, Y. 1957, Measurements of Pressure Fluctuation in the Wake of Cylinder, J. Physical Soc. Japan, 12 533–543.

    Article  Google Scholar 

  • MONIN, A. S. & YAGLOM, A. M. 1975, Statistical Fluid Mechanics. MIT, Cambridge, MA, Vol. 2.

    Google Scholar 

  • NELKIN, M. 1994, Universality and Scaling in Fully Developed Turbulence, Advances in Physics, 43 143–181.

    Article  Google Scholar 

  • OBUKHOFF, A. M. AND YAGLOM, A. M. 1951, The Microstructure of Turbulent Flow, NACA TM1350.

    Google Scholar 

  • PUMIR, A. 1994, A Numerical Study of Pressure Fluctuations in Three-dimensional, Incompressible, Homogeneous, Isotropic Turbulence, Phys. Fluids, 6, 2071–2083.

    Article  MATH  MathSciNet  Google Scholar 

  • SREENIVASAN, K. R. & ANTONIA, R. A. 1997, The Phenomenology of Small-scale Turbulence, Annu. Rev. Fluid Mech., 29 435–472.

    Article  MathSciNet  Google Scholar 

  • TOYODA, K., OKAMOTO, T, & SHIRAHAMA, Y 1993, Eduction of Vortical Structures by Pressure Measurements in Noncircular Jet, Fluid Mech. and Its Applications, 21 125–136.

    Google Scholar 

  • TSUJI, Y. & ISHIHARA, T. 2003, Similarity Scaling of Pressure Fluctuation in Turbulence, Physical Rev. E, 68 026309.

    Article  Google Scholar 

  • VEDULA, P. & YEUNG, P. K. 1999, Similarity Scaling of Acceleration and Pressure Statistics in Numerical Simulation of Isotropic Turbulence, Phys. of Fluids 11, 1208–1220.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Tsuji, Y., Ishihara, T. (2006). STATISTICAL PROPERTY OF PRESSURE FLUCTUATION IN FULLY DEVELOPED TURBULENCE. In: KIDA, S. (eds) IUTAM Symposium on Elementary Vortices and Coherent Structures: Significance in Turbulence Dynamics. Fluid Mechanics and Its Applications, vol 79. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4181-0_17

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4181-0_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4180-8

  • Online ISBN: 978-1-4020-4181-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics