Skip to main content

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 79))

  • 773 Accesses

Abstract

In isotropic turbulence, stagnation points form a fractal multiple-scale network in space such that their number density n s = C s Ld (L/η)Ds where C s is a dimensionless constant, L/η is the inner to outer length-scale ratio and the fractal dimension D s is given by p + 2D s /d = 3; d is the dimensionality of the flow and p is the exponent of the energy spectrum. On the other hand, the statistical persistence of stagnation points is defined in terms of the statistics of stagnation point velocities, and we show that, on average, stagnation points stop moving as the Reynolds number tends to infinity in the frame where the mean flow is zero.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • BATCHELOR, G. K. 1950 The application of the similarity theory of turbulence to atmospheric diffusion. Q. J. R. Meteorol. Soc. 76, 133–146.

    Google Scholar 

  • BOFFETTA, G., CELANI, A., CRISANTI, A. & VULPIANI, A. 1999 Relative dispersion in fully developed turbulence: Lagrangian statistics in synthetic flows. Europhys. Lett. 46, 177–182.

    Article  Google Scholar 

  • CLERCX, H.J.H., VAN HEIJST, G.J.F. & ZOETEWEIJ, M.L. 2003 Quasi-two-dimensional turbulence in shallow fluid layers: The role of bottom friction and fluid layer depth. Phys. Rev. E 67, 066303.

    Google Scholar 

  • DAVILA, J & VASSILICOS, J.C. 2003 Richardson's pair diffusion and the stagnation point structure of turbulence. Phys. Rev. Lett. 91, 144501.

    Article  Google Scholar 

  • FUNG, J.C.H., HUNT, J.C.R., MALIK, N.A. & PERKINS, R.J. 1992 Kinematic simulation of homogeneous turbulent flows generated by unsteady random Fourier modes. J. Fluid Mech. 236, 281–318.

    Article  MathSciNet  Google Scholar 

  • FUNG, J.C.H. & VASSILICOS, J.C. 1998 Two-particle dispersion in turbulent-like flows. Phys. Rev. E 57, 1677–1690.

    Article  MathSciNet  Google Scholar 

  • GOTO, S. & VASSILICOS, J.C. 2004 Particle pair diffusion and persistent streamline topology in two-dimensional turbulence. New J. Phys. 6, 65.

    Article  Google Scholar 

  • GOTO, S., OSBORNE, D.R., VASSILICOS, J.C. & HAIGH, J.D. 2005 Acceleration statistics as measures of statistical persistence of streamlines in isotropic turbulence. Phys. Rev. E 71,015301.

    Article  MathSciNet  Google Scholar 

  • JULLIEN, M.C., PARET, J. & TABELING, P. 1999 Richardson pair dispersion in two-dimensional turbulence. Phys. Rev. Lett. 82, 2872–2875.

    Article  Google Scholar 

  • LA PORTA, A., VOTH, G.A., CRAWFORD, A.M., ALEXANDER, J. & BODENSCHATZ, E. 2001 Fluid particle accelerations in fully developed turbulence. Nature 409, 1017–1019.

    Article  Google Scholar 

  • OBUKHOV, A. 1941 Spectral energy distribution in turbulent flow. Acad. Sci. U.S.S.R., Geog. & Geophys., Moscow 5, 453–566.

    Google Scholar 

  • OREY, S. 1970 Gaussian sample functions and the Hausdorff dimension of level crossing, Z. Wahrscheinlichkeitstheorie verw. Geb. 15, 249–256.

    Article  MATH  MathSciNet  Google Scholar 

  • RICHARDSON , L. F. 1926 Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. Lond. A 110, 709–737.

    Google Scholar 

  • ROSSI, L. 2001 Ph.D. thesis, Universite Joseph Fourier, Grenoble, France.

    Google Scholar 

  • ROSSI, L., VASSILICOS, J.C. & HARDALUPAS, Y. 2004 2D fractal flow controlled by electromagnetic forcing in the laboratory. In Advances in Turbulence X (Eds. H. I. Andersson & P.-A. Krogstad), CIMNE, Barcelona.

    Google Scholar 

  • ROTHSTEIN, D., HENRY, E. & GOLLUB, J.P. 1999 Persistent patterns in transient chaotic fluid mixing. Nature 401, 770–772.

    Article  Google Scholar 

  • SATIJN, M.P., CENSE, A.W., VERZICCO, R., CLERCX, H.J.H. & VAN HEIJST, G.J.F. 2001 Three-dimensional structure and decay properties of vortices in shallow fluid layers. Phys. Fluids 13, 1932–1945.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Vassilicos, J., Davila, J., Goto, S., Hascoet, E., Osborne, D., Rossi, L. (2006). PERSISTENT MULTIPLE-SCALE STAGNATION POINT STRUCTURE. In: KIDA, S. (eds) IUTAM Symposium on Elementary Vortices and Coherent Structures: Significance in Turbulence Dynamics. Fluid Mechanics and Its Applications, vol 79. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4181-0_12

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4181-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4180-8

  • Online ISBN: 978-1-4020-4181-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics