Skip to main content

AUTOMATIC CONTRAST ENHANCEMENT BY HISTOGRAM WARPING

  • Chapter
Computer Vision and Graphics

Part of the book series: Computational Imaging and Vision ((CIVI,volume 32))

Abstract

We present an automated algorithm for global contrast enhancement of images with multimodal histograms. To locate modes and valleys, histogram analysis is performed by kernel density estimation, a robust nonparametric statistical method. Histogram warping by monotonic splines pushes the modes apart, spreading them out more evenly across the dynamic range. This technique can assist in the contrast correction of images taken facing the light source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gonzalez, R. C. and Woods, R. E. 2002. Digital Image Processing, 2 ed. Prentice Hall.

    Google Scholar 

  2. Zamperoni, P. 1995. Image Enhancement. Advances in Imaging and Electron Physics, 92, 1-77.

    Google Scholar 

  3. O’Gorman, L. and Brotman, L. S. 1985. Entropy-Constant Image Enhancement by Histogram Transformation. Proceedings of SPIE, 575, 106-113.

    Google Scholar 

  4. Rosenfeld, A. and Davis, L. S. 1978. Iterative Histogram Modification. IEEE Transactions on Systems, Man & Cybernetics, 8, 4, 300-302.

    Google Scholar 

  5. Peleg, S. 1978. Iterative Histogram Modification 2. IEEE Transactions on Systems, Man & Cybernetics, 8, 7, 555-556.

    Google Scholar 

  6. Raji, A., Thaibaoui, A., Petit, E., et al. 1998. A Gray-Level Transformation-Based Method for Image Enhancement. Pattern Recognition Letters, 19, 13, 1207-1212.

    Article  Google Scholar 

  7. Cheng, Y. 1995. Mean Shift, Mode Seeking, and Clustering. IEEE Transactions on Pattern Analysis & Machine Intelligence, 17, 8, 790-799.

    Google Scholar 

  8. Sang-Yeon, K., Dongil, H., Seung-Jong, C., et al. 1999. Image Contrast Enhancement Based on the Piecewise-Linear Approximation of CDF. IEEE Transactions on Consumer Electronics, 45, 3, 828-834.

    Google Scholar 

  9. Dale-Jones, R. and Tjahjadi, T. 1992. Four Algorithms for Enhancing Images with Large Peaks in Their Histogram. Image & Vision Computing, 10, 7, 495-507.

    Google Scholar 

  10. Yeong-Taeg, K. 1997. Contrast Enhancement Using Brightness Preserving Bi-Histogram Equalization. IEEE Transactions on Consumer Electronics, 43, 1, 1-8.

    Google Scholar 

  11. Yu, W., Qian, C., and Baeomin, Z. 1999. Image Enhancement Based on Equal Area Dualistic Sub-Image Histogram Equalization Method. IEEE Transactions on Consumer Electronics, 45, 1, 68-75.

    Google Scholar 

  12. Soong-Der, C. and Ramli, A. R. 2003. Minimum Mean Brightness Error Bi-Histogram Equalization in Contrast Enhancement. IEEE Transactions on Consumer Electronics, 49, 4, 1310-1319.

    Google Scholar 

  13. Soong-Der, C. and Ramli, A. R. 2003. Contrast Enhancement Using Recursive Mean- Separate Histogram Equalization for Scalable Brightness Preservation. IEEE Transactions on Consumer Electronics, 49, 4, 1301-1309.

    Google Scholar 

  14. Young-Ho, K., Hyun-Suk, J., Kun-Sop, K., et al. 1998. Region-Based Histogram Specification for Dynamic Range Expansion. Proceedings of SPIE, 3302, 90-97.

    Google Scholar 

  15. Leu, J.-G. 1992. Image Contrast Enhancement Based on the Intensities of Edge Pixels. CVGIP: Graphical Models & Image Processing, 54, 6, 497-506.

    Google Scholar 

  16. Weszka, J. S. and Rosenfeld, A. 1979. Histogram Modification for Threshold Selection. IEEE Transactions on Systems, Man & Cybernetics, 9, 1, 38-52.

    Google Scholar 

  17. Pizer, S. M., Amburn, E. P., Austin, J. D., et al. 1987. Adaptive Histogram Equalization and Its Variations. Computer Vision, Graphics, & Image Processing, 39, 3, 355-368.

    Google Scholar 

  18. Joung-Youn, K., Lee-Sup, K., and Seung-Ho, H. 2001. An Advanced Contrast Enhancement Using Partially Overlapped Sub-Block Histogram Equalization. IEEE Transactions on Circuits & Systems for Video Technology, 11, 4, 475-484.

    Google Scholar 

  19. Gregory, J. A. and Delbourgo, R. 1982. Piecewise Rational Quadratic Interpolation to Monotonic Data. IMA Journal of Numerical Analysis, 2, 123-130.

    MathSciNet  Google Scholar 

  20. Sarfraz, M., Al-Mulhem, M., and Ashraf, F. 1997. Preserving Monotonic Shape of the Data Using Piecewise Rational Cubic Functions. Computers & Graphics, 21, 1, 5-14.

    Article  Google Scholar 

  21. Scott, D. W. 1992. Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley.

    Google Scholar 

  22. Terrell, G. R. 1990. The Maximal Smoothing Principle in Density Estimation. Journal of the American Statistical Association, 85, 410, 470-477.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Grundland, M., A. Dodgson, N. (2006). AUTOMATIC CONTRAST ENHANCEMENT BY HISTOGRAM WARPING. In: Wojciechowski, K., Smolka, B., Palus, H., Kozera, R., Skarbek, W., Noakes, L. (eds) Computer Vision and Graphics. Computational Imaging and Vision, vol 32. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4179-9_42

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4179-9_42

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4178-5

  • Online ISBN: 978-1-4020-4179-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics