Skip to main content

EFFICIENT FREQUENCY-DOUBLING OF FEMTOSECOND PULSES IN WAVEGUIDE AND BULK NONLINEAR CRYSTALS Design, fabrication, theory and experiment

  • Conference paper

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 216))

Abstract

We investigate efficient frequency-doubling of low energy femtosecond pulses in bulk and waveguide nonlinear crystals, thereby demonstrating how to achieve a compact and portable ultrafast blue light source. Using a femtosecond Cr:LiSAF laser (fundamental wavelength 860 nm), we examine the relative merits of the process of second harmonic generation (SHG) using bulk potassium niobate, bulk aperiodically-poled KTP, periodically-poled and aperiodically-poled KTP waveguide crystals. While SHG conversion efficiencies up to 37% were achieved using the waveguides, non-traditional strong focusing in the bulk samples yielded efficiencies of 30%. We have developed several theoretical models to accurately describe the temporal and spectral properties of the generated blue light, as well as the observed saturation behavior of the conversion process in the waveguide structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. P.N. Prasad, in: Introduction to Biophotonics (Wiley & Sons, Hoboken, 2003) pp.203–254.

    Book  Google Scholar 

  2. H. Schnitzler, U. Frohlich, T.K.W. Boley, A.E.M. Clemen, J. Mlynek, A. Peters,and S. Schiller, All-solid-state tunable continuous-wave ultraviolet source with high purity and frequency stability, Applied Optics 41(33), 7000–7005 (2002).

    Article  ADS  Google Scholar 

  3. R.S. Knox, Ultrashort processes and biology, Journal of Photochemistry and Photobiology 49, 81–88 (1999).

    Article  Google Scholar 

  4. W. Rudolph, P. Dorn, X. Liu, N. Vretenar, and R. Stock, Microscopy with femtosecond laser pulses: applications in engineering, physics and biomedicine, Applied Surface Science 208, 327–332 (2003).

    Article  ADS  Google Scholar 

  5. S.W. Hell, P.E. Hanninen, J. Salo, A. Kuusisto, E. Soini, T. Wilson, and J.B. Tan, Pulsed and cw confocal microscopy – a comparison of resolution and contrast, Optics Communications 113(1–3), 144–152 (1994).

    Article  ADS  Google Scholar 

  6. B. Agate, C.T.A. Brown, W. Sibbett, and K. Dholakia, Femtosecond optical tweezers for in-situ control of two-photon fluorescence, Optics Express 12(13), 3011–3017 (2004).

    Article  ADS  Google Scholar 

  7. P.J. Campagnola, M.D. Wei, A. Lewis, and L.M. Loew, High-resolution nonlinear optical imaging of live cells by second harmonic generation, Biophysical Journal 77(6), 3341–3349 (1999).

    Article  ADS  Google Scholar 

  8. E. Bordenave, E. Abraham, G. Jonusauskas, J. Oberle, and C. Rulliere, Longitudinal imaging in biological tissues with a single laser shot correlation system, Optics Express 10(1), 35–40 (2002).

    ADS  Google Scholar 

  9. L. Zhu, P. Li, J.T. Sage., and P.M. Champion, Femtosecond dynamics of heme-proteins, Journal of Luminescence 60(1), 503–506 (1994).

    Article  ADS  Google Scholar 

  10. B. Agate, B. Stormont, A.J. Kemp, C.T.A. Brown, U. Keller, and W. Sibbett, Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers, Optics Communications 205, 207–213 (2002).

    Article  ADS  Google Scholar 

  11. B. Agate, E.U. Rafailov, W. Sibbett, S.M. Saltiel, K. Koynov, M. Tiihonen, S. Wang, F. Laurell, P. Battle, T. Fry, and E. Noonan, Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3, IEEE Journal of Selected Topics in Quantum Electronics: Short Wavelength and EUV Lasers (November/December 2004).

    Google Scholar 

  12. B. Agate, A. J. Kemp, C.T.A. Brown, and W. Sibbett, Efficient, high repetition-rate femtosecond blue source using a compact Cr:LiSAF laser, Optics Express 10(16), 824–831 (2002).

    ADS  Google Scholar 

  13. B. Agate, E.U. Rafailov, W. Sibbett, S.M. Saltiel, P. Battle, T. Fry, and E. Noonan, Highly efficient blue-light generation from a compact diode-pumped femtosecond laser by use of a periodically poled KTP waveguide crystal, Optics Letters 28(20), 1963–1965 (2003).

    Article  ADS  Google Scholar 

  14. G. D. Boyd and D.A. Kleinman, Parametric interactions of focused Gaussian light beams, Journal of Applied Physics 39, 3897–3641 (1968).

    Article  Google Scholar 

  15. S. M. Saltiel, K. Koynov, B. Agate, and W. Sibbett, Second-harmonic generation with focused beams under conditions of large group-velocity mismatch, Journal of the Optical Society of America B 21(3), 591–598 (2004).

    Article  ADS  Google Scholar 

  16. A. M. Weiner, A. M. Kan'an, and D. E. Leaird, High-efficiency blue generation by frequency doubling of femtosecond pulses in a thick nonlinear crystal, Optics Letters 23(18), 1441–1443 (1998).

    Article  ADS  Google Scholar 

  17. D. Gunzun, Y. Li, and M. Xiao, Blue light generation in single-pass frequency doubling of femtosecond pulses in KNbO3, Optics Communications 180, 367–371 (2000).

    Article  ADS  Google Scholar 

  18. Y.Q. Li, D. Guzun, G. Salamo, and M. Xiao, High-efficiency blue-light generation by frequency doubling of picosecond pulses in a thick KNbO3 crystal, Journal of the Optical Society of America B 20(6), 1285–1289 (2003).

    Article  ADS  Google Scholar 

  19. S. Yu and A.M. Weiner, Phase-matching temperature shifts in blue generation by frequency doubling of femtosecond pulses in KNbO3, Journal of the Optical Society of America B 16(8), 1300–1304 (1999).

    Article  ADS  Google Scholar 

  20. H. Wang and A.M. Weiner, Efficiency of short-pulse type-I second-harmonic generation with simultaneous spatial walk-off, temporal walk-off, and pump depletion, IEEE Journal of Quantum Electronics 39(12), 1600–1618 (2003).

    Article  ADS  Google Scholar 

  21. M. M. Fejer, G.A. Magel, D.H. Jundt, and R.L. Byer, Quasi-phase-matched second harmonic generation – tuning and tolerances, IEEE Journal of Quantum Electronics 28, 2631–2654 (1992).

    Article  ADS  Google Scholar 

  22. P. Loza-Alvarez, D.T. Reid, P. Faller, M. Ebrahimzadeh, W. Sibbett, H. Karlsson,and F. Laurell, Simultaneous femtosecond-pulse compression and second-harmonic generation in aperiodically poled KTiOPO4, Optics Letters 24(15), 1071–1073 (1999).

    Article  ADS  Google Scholar 

  23. M.A. Arbore, O. Marco, and M.M. Fejer, Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings, Optics Letters 22(12), 865–867 (1997).

    Article  ADS  Google Scholar 

  24. R. DeSalvo, M. Sheik-Bahae, A.A. Said, D.J. Hagan, and E.W. Van Stryland, Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals, Optics Letters 18(3), 194 (1993).

    Article  ADS  Google Scholar 

  25. A.D. Ludlow, H.M. Nelson, and S.D. Bergeson, Two-photon absorption in potassium niobate, Journal of the Optical Society of America B 18(12), 1813–1820 (2001).

    Article  ADS  Google Scholar 

  26. M. M. Fejer. Quasi-phasematched for frequency conversion and all optical signal processing (short course #1260) in Conference on Lasers and Electro-Optics, Baltimore (2001).

    Google Scholar 

  27. A. Yariv, Quantum Electronics (4ed, Wiley & Sons,1997)

    Google Scholar 

  28. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, First-order quasi-phase matched LiNbO3 wave-guide periodically poled by applying an external-field for efficient blue second-harmonic generation, Applied Physics Letters 62(5), 435–436 (1993).

    Article  ADS  Google Scholar 

  29. S.N. Zhu, Y.Y. Zhu, Z.J. Yang, H.F. Wang, Z.Y. Zhang, J.F. Hong, C.Z. Ge, and N.B. Ming, Second-harmonic generation of blue-light in bulk periodically poled LiTaO3, Applied Physics Letters 67(3), 320–322 (1995).

    Article  ADS  Google Scholar 

  30. H. Karlsson, F. Laurell, and L.K. Cheng, Periodic poling of RbTiOPO4 for quasi-phase, matched blue light generation, Applied Physics Letters 74(11), 1519–1521 (1999).

    Article  ADS  Google Scholar 

  31. H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, “Frequency doubling in periodically poled RbTiOAsO4, Electronics Letters 32, 556 (1996).

    Article  Google Scholar 

  32. H. Karlsson and F. Laurell, Electric field poling of flux grown KTiOPO4, Applied Physics Letters 71(24), 3474–3476 (1997).

    Article  ADS  Google Scholar 

  33. C. Canalias, J. Hirohashi, V. Pasiskevicius, and F. Laurell, Polarization switching characteristics of flux grown KTiOPO4 and RbTiOPO4 at room temperature, Applied Physics Letters (submitted), (2005).

    Google Scholar 

  34. K. Fradkin-Kashi and A. Arie, Multiple-wavelength quasi-phase-matched nonlinear interactions, IEEE Journal of Quantum Electronics 35 1649 (1999).

    Article  ADS  Google Scholar 

  35. L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, and W.R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3, Optics Letters 21, 591 (1996).

    Article  ADS  Google Scholar 

  36. K.A. Tillman, D.T. Reid, D. Artigas, J. Hellstrom, V. Pasiskevicius, and F. Laurell, Lowthreshold, high-repetition-frequency femtosecond optical parametric oscillator based on chirped-pulse frequency conversion, Journal of the Optical Society of America B 20 1309 (2003).

    Article  ADS  Google Scholar 

  37. J.-M. Hopkins, G.J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, Highly compact and efficient femtosecond lasers, IEEE Journal of Quantum Electronics 38(4), 360–368 (2002).

    Article  ADS  Google Scholar 

  38. J.-M. Hopkins, G.J. Valentine, W. Sibbett, J.A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, Efficient, low-noise, SESAM-based femtosecond Cr3+:LiSrAlF6 laser, Optics Communications 154(1–3), 54–58 (1998).

    Article  ADS  Google Scholar 

  39. W. Sibbett, B. Agate, C.T.A. Brown, A.A. Lagatsky, C.G. Leburn, B. Stormont, and E.U. Rafailov, Compact Femtosecond Oscillators (invited), in: Ultrafast Optics IV, edited by F. Krausz, (Springer Verlag 2004) pp. 3–21.

    Google Scholar 

  40. C.T.A. Brown, M.A. Cataluna, A.A. Lagatsky, E.U. Rafailov, B. Agate, C.G. Leburn, and W. Sibbett, Compact laser-diode-based femtosecond sources, New Journal of Physics 6, 175 (2004).

    Article  ADS  Google Scholar 

  41. G.J. Valentine, J.-M. Hopkins, P. Loza-Alvarez, G.T. Kennedy, W. Sibbett, D. Burns, and A. Valster, Ultralow-pump-threshold, femtosecond Cr3+:LiSrAlF6 laser pumped by a single narrow-stripe AlGaInP laser diode, Optics Letters 22(21), 1639–1641 (1997).

    Article  ADS  Google Scholar 

  42. A.A. Lagatsky, E.U. Rafailov, C.G. Leburn, C.T.A. Brown, N. Xiang, O.G. Okhotnikov, and W. Sibbett, Highly efficient femtosecond Yb:KYW laser pumped by a single narrowstripe laser diode, Electronics Letters 39(15), 1108–1110 (2003).

    Article  Google Scholar 

  43. E.U. Rafailov, D.J.L. Birkin, W. Sibbett, P. Battle, T. Fry, and D. Mohatt, Efficient direct frequency conversion of a non-resonant injection-seeded laser diode using a periodicallypoled KTP waveguide crystal, Optics Letters 26(24), 1961–1962 (2001).

    Article  ADS  Google Scholar 

  44. Y.S. Wang, V. Petrov, Y.J. Ding, Y. Zheng, J.B. Khurgin, and W.P. Risk, Ultrafast generation of blue light by efficient second-harmonic generation in periodically-poled bulk and waveguide potassium titanyl phosphate, Applied Physics Letters 73(7), 873–875 (1998).

    Article  ADS  Google Scholar 

  45. D.J.L.B. Birkin, E.U. Rafailov, G.S. Sokolovskii, W. Sibbett, G.W. Ross, P.G.R. Smith, and D.C. Hanna, 3.6mW blue light by direct frequency-doubling of a diode laser using an aperiodically-poled lithium niobate crystal, Applied Physics Letters 78(21), 3172–3174 (2001).

    Article  ADS  Google Scholar 

  46. D. Artigas and D.T. Reid, Efficient femtosecond optical parametric oscillators based on aperiodically poled nonlinear crystals, Optics Letters 27(10), 851–853 (2002).

    Article  ADS  Google Scholar 

  47. I.A. Begishev, M. Kalashnikov, V. Karpov, P. Nickles, H. Schonnagel, I.A. Kulagin, and T. Usmanov, Limitation of second-harmonic generation of femtosecond Ti:sapphire laser pulses, Journal of the Optical Society of America B 21(2), 318–322 (2004).

    Article  ADS  Google Scholar 

  48. I. Biaggio, P. Kerkoc, L.S. Wu, P. Gunter, and B. Zysset, Refractive-indexes of orthorhombic KNbO3: Phase-matching configurations for nonlinear-optical interactions, Journal of the Optical Society of America B 9(4), 507–517 (1992).

    Article  ADS  Google Scholar 

  49. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, Absolute scale of second-order nonlinear-optical coefficients, Journal of the Optical Society of America B 14(9), 2268–2294 (1997).

    Article  ADS  Google Scholar 

  50. G.G. Gurzadian, V.G. Dmitriev, and D.N. Nikogosyan, Handbook of nonlinear optical crystals (3ed), (Springer Verlag, New York, 1999).

    Google Scholar 

  51. L.E. Busse, L. Goldberg, M.R. Surette, and G. Mizell, Absorption Losses in MgO-doped and undoped potassium niobate, Journal of Applied Physics 75(2), 1102–1110 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Agate, B. et al. (2006). EFFICIENT FREQUENCY-DOUBLING OF FEMTOSECOND PULSES IN WAVEGUIDE AND BULK NONLINEAR CRYSTALS Design, fabrication, theory and experiment. In: Janz, S., Ctyroky, J., Tanev, S. (eds) Frontiers in Planar Lightwave Circuit Technology. NATO Science Series II: Mathematics, Physics and Chemistry, vol 216. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4167-5_08

Download citation

Publish with us

Policies and ethics