Skip to main content

MICROPHOTONICS Current challenges and applications

  • Conference paper
Frontiers in Planar Lightwave Circuit Technology

Abstract

This chapter gives an overview of the current challenges encountered in implementing devices based on high index contrast microphotonic waveguides, along with some new applications. An input coupler based on graded index (GRIN) waveguides is described. Theoretical and experimental results on using of cladding stress to eliminate the polarization dependence in SOI waveguide devices are reviewed. Recent work on output coupling of data on many output waveguides using waveguide to free space coupler array is also described. Design rules are presented for increasing bandwidth and resolution of integrated waveguide microspectrometers, to address applications in spectroscopic sensing and analysis. Finally, the potential for high index contrast microphotonic waveguides in evanescent field sensing is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P.A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” Photon. Technol. Lett. 16, 503–505 (2004).

    Article  ADS  Google Scholar 

  2. Y. Hibino, “Recent Advances in high density and large scale AWG multi-demultiplexers with higher index contrast silica based PLCs,” IEEE J. Sel. Top. Quant. Electron. 17, 1090–1101 (2002).

    Article  Google Scholar 

  3. A. Delâge, S. Bidnyk, P. Cheben, K. Dossou, S. Janz, B. Lamontagne, M. Packirisamy, and D.-X. Xu, “Recent developments in integrated spectrometers,” Proceedings of the 6th International Conference on Transparent Optical Networks, Vol. 2, 78–83 (2004).

    Google Scholar 

  4. P. Cheben, A. Bogdanov, A. Delâge, S. Janz, B. Lamontagne, M.-J. Picard, E. Post,and D.-X. Xu, “A 100 channel near-infra-red SOI waveguide microspectrometer: Design and fabrication challenges,” Proceedings of the SPIE, Vol. 5644, 103–110 (SPIE, Bellingham, MA, 2005).

    Google Scholar 

  5. J.C. Petersen, J. Henningsen, “Molecules as absolute standards for optical telecommunications requirements and characterization,” Proceedings of the International Union of Radio Science 27th General Assembly, Maastricht, The Netherlands, CD ROM (2002).

    Google Scholar 

  6. C. Manolatou, S.G. Johnson, S. Fan, P.R. Villeneuve, H.A. Haus, and J.D. Joannopoulos, “High density integrated optics,” J. Lightwave Technol. 17, 1682–1692 (1999).

    Article  ADS  Google Scholar 

  7. Q. Xu, V.R. Almeida, R.R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive index material,” Opt. Lett. 29, 1626–1628 (2004).

    Article  ADS  Google Scholar 

  8. S. Janz. P. Cheben, H. Dayan, and R. Deakos, “Measurement of birefringence in thin-film waveguides by Rayleigh scattering,” Opt. Lett. 28, 1778–1780 (2003).

    Article  ADS  Google Scholar 

  9. L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Kassan, “Polarization independent single mode rib waveguides on silicon-on-insulator for telecommunications wavelengths,” Opt. Commun. 210, 43–49 (2002).

    Article  ADS  Google Scholar 

  10. D.-X. Xu, P. Cheben, D. Dalacu, A. Delâge, S. Janz, B. Lamontagne, M.-J. Picard,and W.N. Ye, “Eliminating the birefringence in silicon-on-insulator ridge waveguides by use of cladding stress,” Opt. Lett. 29, 2384–2386 (2004).

    Article  ADS  Google Scholar 

  11. D.-X. Xu, P. Cheben, S. Janz, D. Dalacu, “Control of SOI waveguide polarization properties for microphotonic applications,” Proc. of CLEO/Pacific RIM 2003, CD-ROM (IEEE, Piscataway, NJ, 2003).

    Google Scholar 

  12. W.N. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, and N.G.T. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides,” IEEE J. Lightwave Technol. (in press, 2005).

    Google Scholar 

  13. M. Huang, “Stress effects on the performance of optical waveguides,” Intnl. J. of Sol. and Structures 40, 1615–1632 (2003).

    Article  MATH  Google Scholar 

  14. X. Zhao, C. Li, and Y.Z. Xu, “Stress induced birefringence control in optical planar waveguides,” Opt. Lett. 28, 564–566 (2003).

    Article  ADS  Google Scholar 

  15. K. Röll, “Analysis of stress and strain distribution in thin films and substrates,” J. Appl. Phys. 47, 3224–3229 (1976).

    Article  ADS  Google Scholar 

  16. A. Sure, T. Dillon, J. Murakowski, C. Lin, D. Pustai, and D.W. Prather, “Fabrication and characterization of three-dimensional silicon tapers,” Optics Express 11, 3555–3561 (2003).

    Article  ADS  Google Scholar 

  17. V.R. Almeida, R.R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302–1304 (2003).

    Article  ADS  Google Scholar 

  18. G. Masanovic, V.M.N. Passaro, and G.T. Reed, “Dual grating-assisted directional coupling between fibers and thin semiconductor waveguides, IEEE Phot. Technol. Lett. 15, 1395–1397 (2003).

    Article  ADS  Google Scholar 

  19. A. Delâge, S. Janz, D.-X. Xu, D. Dalacu, B. Lamontagne, and A. Bogdanov, Graded-index coupler for microphotonic SOI waveguides,” SPIE Proc. Vol. 5577, Photonics North 2004 (in press, 2004).

    Google Scholar 

  20. K. Shiraishi, C.S. Tsai, H. Yoda, and K. Minagawa, Proc. of CLEO/Pacific RIM 2003, CD-ROM (IEEE, Piscataway, NJ, 2003).

    Google Scholar 

  21. F.P. Payne and J.P.R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).

    Article  ADS  Google Scholar 

  22. K.K. Lee, D.R. Lim, H.-C. Luan, A. Agarawal, J. Foresi, and L.C Kimmerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).

    Article  ADS  Google Scholar 

  23. F. Grillot, L. Vivien, S. Laval, D. Pascal, E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Phot. Technol. Lett. 16, 1661–1663 (2004).

    Article  ADS  Google Scholar 

  24. K.K. Lee, D.R. Lim, L.C. Kimmerling, J. Shin, and F. Cerrina, “Fabrication of ultra-low loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001).

    Article  ADS  Google Scholar 

  25. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. van Campenhout, D. Taillaert, B. Luyssaert, P. Bientman, D. van Thourhout, and R. Baets, “Low loss photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Phot. Technol. Lett. 16, 1328–1330 (2004).

    Article  ADS  Google Scholar 

  26. R.L. Espinola, T. Izuhara, M.-C. Tsai, R.M. Osgoode, and H. Dotsch, “Magneto-optical non-reciprocal phase shift in garnet/silicon-on-insulator waveguides,” Opt. Lett. 29 941–943 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Janz, S. et al. (2006). MICROPHOTONICS Current challenges and applications. In: Janz, S., Ctyroky, J., Tanev, S. (eds) Frontiers in Planar Lightwave Circuit Technology. NATO Science Series II: Mathematics, Physics and Chemistry, vol 216. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4167-5_01

Download citation

Publish with us

Policies and ethics