Skip to main content

Active Control Strategies for Vibration Isolation

  • Conference paper

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 130))

Abstract

In the fields of high-resolution metrology and manufacturing, effective anti-vibration measures are required to obtain precise and repeatable results. This is particularly true when the amplitudes of ambient vibration and the dimensions of the investigated or manufactured structure are comparable, e.g. in sub-micron semiconductor chip production, holographic interferometry, confocal optical imaging, and scanning probe microscopy. In the active antivibration system examined, signals are acquired by extremely sensitive vibration detectors, and the vibration is reduced using a feedback controller to drive electrodynamic actuators. This paper deals with the modeling and control of this anti-vibration system. First, a six-degree-of-freedom rigid body model of the system is developed. The unknown parameters of the unloaded system, including actuator transduction constants, spring stiffness, damping, moments of inertia, and the vertical position of the center of mass, are determined by comparing measured transfer functions to those calculated using the updated model. Finally, two different strategies for actively controlling the vibration isolation system are considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fuller, C.R., Elliott, S.J. and Nelson, P.A., Active Control of Vibration, Academic Press, 1996.

    Google Scholar 

  2. Stöbener, U. and Gaul, L., “Piezoelectric Stack Actuator: FE Modeling and Application for Vibration Isolation,” in Proceedings of the NATO Advanced Study Institute on Responsive Systems for Active Vibration Control, Ed. A. Preumont, Kluwer Academic Publishers, Dordecht, 2001.

    Google Scholar 

  3. Hurlebaus, S., Smart Structures-Fundamentals and Applications, Lecture Notes, Institute A of Mechanics, University of Stuttgart, 2005.

    Google Scholar 

  4. Huang, X., Elliott, S.J. and Brennan, M.J., “Active Isolation of a Flexible Structure from Base Vibration,” Journal of Sound and Vibration, 263, 357–376.

    Google Scholar 

  5. Riebe, S. and Ulbrich, H., “Modeling and Online Computation of the Dynamics of a Parallel Kinematic with Six Degrees-of-Freedom,” Archive of Applied Mechanics, 72, 2003, 817–829.

    Google Scholar 

  6. Ginsberg, J.H., Advanced Engineering Dynamics, 2nd edn., Cambridge University Press, New York, 1995.

    Google Scholar 

  7. Beadle, B.M., Hurlebaus, S., Stöbener, U. and Gaul, L., “Modeling and Parameter Identification of an Active Anti-Vibration System,” SPIE International Symposia in Smart Structures & Materials/NDE, San Diego, March 2005.

    Google Scholar 

  8. Van de Vegte, J., Feedback Control Systems, 3rd edn., Prentice Hall, NJ, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Beadle, B.M., Hurlebaus, S., Gaul, L., Stöbener, U. (2005). Active Control Strategies for Vibration Isolation. In: Ulbrich, H., GÜnthner, W. (eds) IUTAM Symposium on Vibration Control of Nonlinear Mechanisms and Structures. Solid Mechanics and its Applications, vol 130. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4161-6_7

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4161-6_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4160-0

  • Online ISBN: 978-1-4020-4161-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics