Advertisement

Vibration Control of Elastic Joint Robots by Inverse Dynamics Models

  • Michael Thümmel
  • Martin Otter
  • Johann Bals
Part of the Solid Mechanics and its Applications book series (SMIA, volume 130)

Abstract

In this article tracking control of nonlinear plants using a two degree of freedom controller structure is considered. The work described herein focuses on the design of feedforward controllers based on automatic generation of inverse plant models. The method is applied to the problem of vibration control of elastic joint robots and is demonstrated with simulations and experimental results.

Key words

inverse dynamics model elastic joint robot two degree of freedom controller Modelica Dymola 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albu-Schäffer, A. (2002). Regelung von Robotern mit elastischen Gelenken am Beispiel der DLR-Leichtbauarme. Ph.D. Dissertation, Technische Universität München.Google Scholar
  2. De Luca, A. and Tomei, P. (1996). Elastic Joints. In: Theory of Robot Control, de Wit, C.C., Siciliano, B. and Bastin, G. (eds), Springer Verlag, Berlin, pp. 179–217.Google Scholar
  3. Dynasim, 2005, Dymola — Users Manual; http://www.dynasim.com.Google Scholar
  4. Höpler, R. and Thümmel, M. (2004). Symbolic Computation of the Inverse Dynamics of Elastic Joint Robots. In: Proc. of the 2004 IEEE Intern. Conference on Robotics and Automation, pp. 4314–4319.Google Scholar
  5. Kreisselmeier, G. (1999). Struktur mit zwei Freiheitsgraden. Automatisierungstechnik 6:266–269.Google Scholar
  6. Mattsson, S.E. and Söderlind, G. (1993). Index Reduction in Differential-Algebraic Equations Using Dummy Derivatives. SIAM Journal of Scientific and Statistical Computing 14:677–692.Google Scholar
  7. Modelica Association (2005). ModelicaTM — A Unified Object-Oriented Language for Physical Systems Modeling. Tutorial,Version 1.4; http://www.modelica.org.Google Scholar
  8. Pantelides, C.C. (1988). The Consistent Initialization of Differential-Algebraic Systems. SIAM Journal of Scientific and Statistical Computing 9:213–231.zbMATHMathSciNetGoogle Scholar
  9. Sontag, E.D. (1989). Smooth Stabilization Implies Coprime Factorization. IEEE Trans. Aut. Control 34:435–443.CrossRefzbMATHMathSciNetGoogle Scholar
  10. Thümmel, M., Otter, M. and Bals, J. (2001). Control of Robots with Elastic Joints based on Automatic Generation of Inverse Dynamics Models. In: Proc. of 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 925–930.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Michael Thümmel
    • 1
  • Martin Otter
    • 1
  • Johann Bals
    • 1
  1. 1.DLR, Institute of Robotics and MechatronicsGermany

Personalised recommendations