Skip to main content

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 130))

Abstract

Inverse dynamics control of mechanisms with prescribed motions results in high energy demand which will be reduced by adding springs for local energy storage. Two methods are proposed, adjusting the trajectories of mechanisms to a periodic conservative trajectory as well as finding optimal spring parameters by curve fitting. A control logic is introduced to further reduce the energy cost of transition processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann, M., Guse, N. and Lakrad, F., Improving Efficiency of Controlled Rheonomic Systems by Curve Fitting, Zwischenbericht ZB-136. Universität Stuttgart, Institut B für Mechanik, 2003.

    Google Scholar 

  2. Babitsky, V.I. and Shipilov, A.V., Resonant Robotic Systems, Springer-Verlag, Berlin, 2003.

    Google Scholar 

  3. Guse, N. and Schiehlen, W., Low Energy Control of Periodic Motions in Manufacturing. In Proc. XXI ICTAM 2004, Warsaw, Poland, August 15–21, 2004.

    Google Scholar 

  4. Schiehlen, W. and Guse, N., Control of Limit Cycle Oscillations. In Proceedings of IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics, G. Rega and F. Vestroni (eds), Rome, Italy, 8–13 June 2003, Springer, Dordrecht, 2005, pp. 429–440.

    Google Scholar 

  5. Schiehlen, W. and Guse, N., Power Demand of Actively Controlled Multibody Systems. In ASME Proceedings of DETC 2001/ VIB-21343, Pittsburgh, PA, USA, September 9–12, 2001.

    Google Scholar 

  6. Waldron, K.J., Some Thoughts on the Design of Power Systems for Legged Vehicles. In Advances in Multibody Systems and Mechatronics, Gerhard-Mercator-Universität, Duisburg, 1999, pp. 389–394.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Schiehlen, W., Guse, N. (2005). Powersaving Control of Mechanisms. In: Ulbrich, H., GÃœnthner, W. (eds) IUTAM Symposium on Vibration Control of Nonlinear Mechanisms and Structures. Solid Mechanics and its Applications, vol 130. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4161-6_25

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4161-6_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4160-0

  • Online ISBN: 978-1-4020-4161-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics