Active and Semi-Active Control of Electrorheological Fluid Devices

  • Andreas Kugi
  • Klaus Holzmann
  • Wolfgang Kemmetmüller
Part of the Solid Mechanics and its Applications book series (SMIA, volume 130)


This paper is devoted to two different applications of electrorheological (ER) fluid devices. The first application deals with the modeling and nonlinear control of an active actuator consisting of a double-rod cylinder and four ER valves arranged in a full bridge configuration. Secondly, a semi-active shock absorber system is designed by utilizing the special properties of ER valves. The latter application is also intended to demonstrate the benefits of a mechatronic design approach, where the control strategy and the system components are designed simultaneously. Measurement results prove the feasibility of the proposed ER devices.

Key words

electrorheological fluids ER actuator ER shock absorber active and semi-active control nonlinear control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Butz, T. and von Stryk, O. (2002). Modelling and Simulation of Electro-and Magnetorheological Fluid Dampers, Z. Angew. Math. Mech., Vol. 82, No. 1, 3–20.CrossRefGoogle Scholar
  2. Eckart, W. (2000). Phenomenological Modeling of Electrorheological Fluids with an Extended Casson-Model, J. of Cont. Mechanics and Thermodynamics, Vol. 12, 341–362.zbMATHMathSciNetGoogle Scholar
  3. Fees, G. (2001). Statische und dynamische Eigenschaften eines hochdynamischen ER-Servoantriebes, Ölhydraulik und Pneumatik, Vol. 45, 45–48.Google Scholar
  4. FLUDICON (2001). Rheact, Technical Product Description 1, 1–13.Google Scholar
  5. Franc, J.P. et al. (1995). La Cavitation Mécanismes Physiques et Aspects Industriels, Presses Universitaires de Grenoble.Google Scholar
  6. Gavin, H.P. (2001). Poiseuille flow of ER and MR Materials, J. of Rheology, Vol. 45, No. 4, 983–994.Google Scholar
  7. Hoppe, R.H.W., Mazurkevitch, G., von Stryk, O. and Rettig, U. (2000). Modeling, simulation, and control of electrorheological automobile devices, in Proc. Conf. Int. Symp. SFB 438, Munich, Germany, June 30–July 2, 1999, pp. 251–276.Google Scholar
  8. Kemmetmüller, W. and Kugi, A. (2004a). Nonlinear Control in Electrorheological Fluid Devices, in Proc. of the 3rd European Conference on Structural Control, Vienna, Austria, July 12–15, 2004, Vol. 1, pp. M9-9–M9-12.Google Scholar
  9. Kemmetmüller, W. and Kugi, A. (2004b). Modeling and Control of an Electrorheological Actuator, Preprints of the 3rd IFAC Symposium on Mechatronic Systems, Sydney, Australia, September 6–8, 2004, pp. 271–276.Google Scholar
  10. Merritt, E.M. (1967). Hydraulic Control Systems, John Wiley, New York.Google Scholar
  11. Parthasarathy, M. and Klingenberg, D.J. (1996). Electrorheology: mechanisms and models, Material Science and Engineering, R17, 57–103.Google Scholar
  12. Rajagopal, K.R. and Wineman, A.S. (1992). Flow of Electrorheological Materials, Acta Mechanica, Vol. 91, 57–75.CrossRefMathSciNetGoogle Scholar
  13. Růžička, M. (2000). Electrorheological Fluids: Modeling and Mathematical Theory, Springer, Berlin.Google Scholar
  14. Whittle, M., Atkin, R.J. and Bullough, W.A. (1996). Dynamics of an electrorheological valve, Int. J. of Modern Physics B, Vol. 10, 2933–2950.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Andreas Kugi
    • 1
  • Klaus Holzmann
    • 1
  • Wolfgang Kemmetmüller
    • 1
  1. 1.Chair of System Theory and Automatic ControlSaarland UniversitySaarbrückenGermany

Personalised recommendations