Skip to main content

Different Control Strategies for the Active Suppression of Brake Squeal

  • Conference paper
IUTAM Symposium on Vibration Control of Nonlinear Mechanisms and Structures

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 130))

  • 1400 Accesses

Abstract

The present paper is devoted to the modeling and the active suppression of brake squeal. Two different control strategies are described and tested on the basis of a four degree of freedom disk brake model. The first control law is based on optimal control and includes a filter to estimate the system’s state. The second law maximizes the energy dissipated by the friction forces between the disk and the brake pads. Both control strategies are compared with respect to their practical application and implemented in a floating caliper disk brake at a test rig.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ouyang, H. and Mottershead, J.E., “Friction-induced parametric resonances in disc: Effect of a negative friction-velocity relationship”, Journal of Sound and Vibration, 209(2), 1998, 251–264.

    Article  Google Scholar 

  2. Millner, N., “An analysis of disc brake squeal”, SAE Technical Paper Series, 780332, 1978.

    Google Scholar 

  3. Chakraborty, G., Jearsiripongkul, T., von Wagner, U. and Hagedorn, P., “A new model for a floating caliper disk brake”, VDI-Tagung Reibung und Schwingungen in Fahrzeugen, Maschinen und Anlagen, Hannover (Germany) November 26—27, 2002.

    Google Scholar 

  4. Jearsiripongkul, T., Hochlenert, D, von Wagner, U. and Hagedorn, P., “A nonlinear floating caliper disk brake model to incorporate squeal”, in Proceedings of SAE 23rd Annual Brake Colloquium & Exhibition, 2005, submitted.

    Google Scholar 

  5. Kane, T.R. and Levinson, D.A., Dynamics: Theory and Applications, McGraw-Hill, 1985.

    Google Scholar 

  6. Popp, K., Rudolph, M., Kröger M. and Lindner, M., “Mechanisms to generate and avoid friction induced vibrations”, VDI-Bericht 1736, 2002, 1–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Hagedorn, P., Hochlenert, D. (2005). Different Control Strategies for the Active Suppression of Brake Squeal. In: Ulbrich, H., GÜnthner, W. (eds) IUTAM Symposium on Vibration Control of Nonlinear Mechanisms and Structures. Solid Mechanics and its Applications, vol 130. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4161-6_14

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4161-6_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4160-0

  • Online ISBN: 978-1-4020-4161-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics