Skip to main content

Life history strategies of cladocerans: comparisons of tropical and temperate taxa

  • Chapter
Aquatic Biodiversity II

Part of the book series: Developments in Hydrobiology ((DIHY,volume 180))

Abstract

We review recent works on different life tropical and temperate freshwater bodies, comparing the strategies that cladocerans have evolved to adapt to contrasting environmental conditions in the two geographical regions. These life-history parameters relate to age and size at maturity, survival, fecundity, life-expectancy at birth, lifespan, gross, and net reproductive rates, generation time, the rate of population increase, peak population density and day of peak abundance. We also discuss the role of photoperiod and temperature on some of these life history parameters.We found a general paucity of experimental work and field data in tropics on cladocerans. There is very limited information on the few Daphnia species found in the tropics. The misconception of low species diversity of cladocerans in the tropics arose due to several reasons including lack of extensive and intensive field collections. Higher water temperatures apparently promote permanent infestation of tropical waters with toxic cyanobacteria, which reduce the zooplankton diversity. In addition to higher temperatures in the tropics, the year-round high predation pressure of planktivorous fish probably causes the tropical species, particularly in pelagic habitats, to reach maturity earlier (<3 days) than in temperate regions. Species of Daphnia in temperate regions are particularly adapted to living at food concentrations that are much lower and seasonably more variable than those for tropical genera such as Diaphanosoma. This is further corroborated by the more than an order of magnitude higher threshold food concentration (TFC) for tropical Cladocera than for their temperate counterparts. Fecundity patterns differ between tropical and temperate cladoceran taxa: cultured under optimal temperature regimes, tropical taxa have fewer eggs than temperate species of a comparable body size. Predation pressure may act differently depending on the size of the cladoceran neonates and thus on their population size structure. Global warming and climate changes seem to affect the behaviour (migration), distribution, and abundance of cladocerans. Apparently, in direct response to these changes, the possibility of encountering the tropical cladocerans in the northern, temperate hemisphere (bioinvasions) is on the rise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achenbach, L. & W. Lampert, 1997. Effects of elevated temperature on threshold food concentrations and possible competitive abilities of differently sized cladoceran species. Oikos 79: 469–476.

    Google Scholar 

  • Alekseev, V. & W. Lampert, 2001. Maternal control of restingegg production in Daphnia. Nature 41: 899–901.

    Google Scholar 

  • Alva-Martínez, A. F., S. S. S. Sarma & S. Nandini, 2001. Comparative population dynamics of three cladoceran species (Cladocera) in relation to different levels of Chlorella vulgaris and Microcystis aeruginosa. Crustaceana 78:749–764.

    Google Scholar 

  • Arbaèiauskas, K. & W. Lampert, 2003. Seasonal adaptation of ex-ephippio and parthenogenetic offspring of Daphnia magna: differences in life history and physiology. Functional Ecology 17: 431–437.

    Google Scholar 

  • Arnott, S. E. & M. J. Vanni, 1993. Zooplankton assemblages in fishless bog lakes: Influence of biotic and abiotic factors. Ecology 74: 2361–2380.

    Google Scholar 

  • Babu, S. & C. K. G. Nayar, 1997. Laboratory studies on the life cycle of Simocephalus serrulatus Koch 1881 (Cladocera: Crustacea). Journal of the Bombay Natural History Society 94: 317–321.

    Google Scholar 

  • Benider, A., A. Tifnouti & R. Pourriot, 2002. Growth of Moina macrocopa (Straus, 1820) (Crustacea, Cladocera): influence of trophic conditions, population density and temperature. Hydrobiologia 468: 1–11.

    Article  Google Scholar 

  • Boersma, M. & C. Kreutzer, 2002. Life at the edge: is food quality really of minor importance at low quantities? Ecology 83: 2552–2561.

    Google Scholar 

  • Bungartz, B. & D. K. Branstrator, 2003. Morphological changes in Daphnia mendotae in the chemical presence of Bythotrephes longimanus. Archiv für Hydrobiologie 158: 97–108.

    Google Scholar 

  • Caceres, C. E. & M. S. Schwalbach, 2001. How well do laboratory experiments explain field patterns of zooplankton emergence? Freshwater Biology 46: 1179–1189.

    Article  Google Scholar 

  • Chapelle G. & L. S. Peck, 1999. Polar gigantism dictated by oxygen availability. Nature 399: 114–115.

    Article  CAS  Google Scholar 

  • Christopher, J. M., 2000. First record of Daphnia lumholtzi Sars in the Great Lakes. Journal of Great Lakes Research 26:352–354.

    Google Scholar 

  • Cousyn, C., L. De Meester, J. K. Colbourne, L. Brendonck, D. Verschuren & F. Volckaert, 2001. Rapid, local adaptation of zooplankton behavior to changes in predation pressure in the absence of neutral genetic changes. Proceedings of the National Academy of Sciences, USA 98: 6256–6260.

    Article  CAS  Google Scholar 

  • Darchambeau, F., P. J. Faerovig & D. O. Hessen, 2003. How Daphnia copes with excess carbon in its food. Oecologia 136:336–346.

    Article  PubMed  Google Scholar 

  • De Bernardi, R. & M. Manca, 1982. The consequences of life history strategies on competition between two cladocerans. Memorie dell Istituto italiano di idrobiologia 40: 145–161.

    Google Scholar 

  • De Clerk, S., L. De Meester, N. Podoor & J. M. Conde-Porcuna, 1997. The relevance of size efficiency to biomanipulation theory. Hydrobiologia 360: 265–275.

    Google Scholar 

  • De Lange, H. & P. L. Van Reeuwijk, 2003. Negative effects of UVB-irradiated phytoplankton on life history traits and fitness of Daphnia magna. Freshwater Biology 48: 678–686.

    Google Scholar 

  • De Meester, L., 1994. Life histories and habitat selection in Daphnia: divergent life histories of D. magna clones differing in phototactic behaviour. Oecologia 97: 333–341.

    Google Scholar 

  • De Meester, L., P. Dawidowicz, E. Van Good & C. J. Loose, 1998. Ecology and evolution of predator-induced behaviour of zooplankton: depth selection behaviour and diel vertical migration. In R. Tollrian & Harvell, C. D. (eds), Ecology and Evolution of Inducible Defences. Princeton University Press, New Jersey: 160–176.

    Google Scholar 

  • Dodson, S. I. & D. G. Frey, 2001. Cladocera and other Branchiopoda. In Thorp, J. H. & Covich, A. P. (eds), Ecology and Classification of North American Freshwater Invertebrates, 2nd edn. Academic Press, San Diego, San Francisco: 849–913.

    Google Scholar 

  • Downing, J. A. & F. H. Rigler (eds), 1984. A Manual for the Methods of Assessment of Secondary Productivity in Fresh Waters, 2nd edn. IBP Handbook 17. Blackwell Scientific Publications, London.

    Google Scholar 

  • Dudycha, J. L., 2003. A multi-environment comparison of senescence between sister species of Daphnia. Oecologia 135:555–563.

    PubMed  Google Scholar 

  • Dumont, H. J., 1994. On the diversity of the Cladocera in the tropics. Hydrobiologia 272: 27–38.

    Google Scholar 

  • Dumont, H. J., J. G. Tundisi & K. Roche (eds), 1990. Intrazooplankton Predation. Developments in Hydrobiology No. 60. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Dumont, H. & S. Negrea 2002. Introduction to the Class Branchiopoda. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, Backhuys Publishers, The Netherlands.

    Google Scholar 

  • Duncan, N., 1989. Food limitation and body size in the life cycle of planktonic rotifers and cladocerans. Hydrobiologia 186/187: 11–28.

    Article  Google Scholar 

  • Engelmayer, A., 1995. Effects of predator-released chemicals on some life history parameters of Daphnia pulex. Hydrobiologia 307: 203–206.

    Article  Google Scholar 

  • Enríquez-García, C., S. Nandini & S. S. S. Sarma, 2003. Food type effects on the population growth patterns of littoral rotifers and cladocerans. Acta Hydrochimica et Hydrobiologica 31: 120–133.

    Google Scholar 

  • Fernando, C. H., 2002. In Fernando, C. H. (ed.), Guide to Tropical Freshwater Zooplankton. Identification, Ecology and Impacts on Fisheries. Backhuys Publishers, The Netherlands: 255–280.

    Google Scholar 

  • Fernando, C. H. & J. C. Paggi, 1997. Cosmopolitanism and latitudinal distribution of freshwater planktonic Rotifera and Crustacea. Verhandlungen der internationale Vereinigung für Limnologie 26: 1916–1917.

    Google Scholar 

  • Ferrão-Filho, A. S. & S. M. F. O. Azevedo, 2003. Effects of unicellular and colonial forms of toxic Microcystis aeruginosa from laboratory cultures and natural populations on tropical cladocerans. Aquatic Ecology 37: 23–35.

    Google Scholar 

  • Gillooly, J. F., 2000. Effect of body size and temperature on generation time in zooplankton. Journal of Plankton Research 22: 241–251.

    Article  Google Scholar 

  • Gliwicz, Z. M., 1990. Food thresholds and body size in cladocerans. Nature 343: 638–640.

    Article  Google Scholar 

  • Gliwicz, Z. M., 2003. Between hazards of starvation and risks of predation: the ecology of offshore animals. In Kinne, O. (ed.), Excellence in Ecology No. 12. International Ecology Institute, Oldedorf/Luhe, Germany: 379 pp.

    Google Scholar 

  • Gliwicz, Z. M. & W. Lampert, 1990. Food thresholds in Daphnia species in the absence and presence of blue-green filaments. Ecology 71: 691–702.

    Google Scholar 

  • Gliwicz, Z. M. & M. J. Boavida, 1996. Clutch size and body size at first reproduction in Daphnia pulicaria at different levels of food and predation. Journal of Plankton Research 18: 863–880.

    Google Scholar 

  • Gulati, R. D., 1977. Influence of temperature on animal life with special reference to food uptake and metabolism of zooplankton. In Marois, M. (ed), Towards a Plan of Action for Mankind: Proceedings of a World Conference, Pergamon, Oxford, Vol. 3: Biological balance and thermal modifications: 205–218.

    Google Scholar 

  • Gulati, R. D. & W. R. DeMott, 1997. The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshwater Biology 38: 753–768.

    Article  Google Scholar 

  • Gulati, R. D., E. H. R. R. Lammens, M. L. Meyer & E. van Donk, 1990. Biomanipulation-tool for water management. Hydrobiologia 200/201: 1–628.

    Google Scholar 

  • Hardy, E. R. & A. Duncan, 1994. Food concentration and temperature effects on life cycle characteristics of tropical cladocera (Daphnia gessneri Herbst, Daiphanosoma sarsi Richard, Moina reticulata (Daday)): 1. Development time. Acta Amazonica 24: 119–134.

    Google Scholar 

  • Harper, D., 1992. Eutrophication of freshwaters. Principles, Problems and Restoration. Chapman & Hall, London.

    Google Scholar 

  • Hebert, P. D. N. & T. L. Finston, 1993. A taxonomical reevaluation of North American Daphnia (Crustacea: Cladocera). D. similis complex. Canadian Journal of Zoology 71: 908–925.

    Google Scholar 

  • Hebert, P. D. N. & M. E. A. Cristescu, 2002. Genetic perspectives on invasions: the case of the Cladocera. Canadian Journal of Fisheries and Aquatic Sciences 59: 1229–1234.

    Article  CAS  Google Scholar 

  • Hessen, D. O., P. J. Faeroevig & T. Andersen, 2002. Light, nutrients, and P:C ratios in algae: grazer performance related to food quality and quantity. Ecology 83: 1886–1898.

    Google Scholar 

  • Hillbricht-Illkowska, A., 1977. Trophic relations and energy flow in pelagic plankton. Polish Ecological Studies 3: 3–98.

    Google Scholar 

  • Hrbáček, J. & M. Novotná-Dvořáková, 1965. Plankton of four backwaters related to their size and fish stock. Řada matematických a Přírodních věd 75: 3–64.

    Google Scholar 

  • Hülsmann, S., 2001. Reproductive potential of Daphnia galeata in relation to food conditions: implications for a changing size-structure of the population. Hydrobiologia 491: 35–46.

    Google Scholar 

  • Hülsmann, S., 2003. Recruitment patterns of Daphnia: a key for understanding midsummer declines? Hydrobiologia 491: 35–46.

    Google Scholar 

  • Hülsmann, S. & H. Voigt, 2003. Life history of Daphnia galeata in a hypertrophic reservoir and consequences of non-consumptive mortality for the initiation of a midsummer decline. Freshwater Biology 47: 2313–2324.

    Google Scholar 

  • Hurtado-Bocanegra, M. D., S. Nandini & S. S. S. Sarma, 2002. Combined effects of food level and inoculation density on competition between Brachionus patulus (Rotifera) and the cladocerans Ceriodaphnia dubia and Moina macrocopa. Hydrobiologia 468: 13–22.

    Google Scholar 

  • Hutchinson, G. E., 1967. A treatise on limnology, 2. John Wiley, New York. 1115 pp.

    Google Scholar 

  • Infante, A. & W. Riehl, 1984. The effects of Cyanophyta upon zooplankton in a eutrophic tropical lake (Lake Valencia, Venezuela). Tropical zooplankton. Developments in Hydrobiology No. 23: 293–298.

    Google Scholar 

  • Innes, D. J. & D. R. Singleton, 2000. Variation in allocation to sexual and asexual reproduction among clones of cyclically parthenogenetic Daphnia pulex (Crustacea: Cladocera). Biological Journal of the Linnean Society 71: 771–787.

    Article  Google Scholar 

  • Kerfoot, W. C. & A. Sih (eds), 1987. Predation: direct and indirect impacts on aquatic communities. University Press of New England, Hanover, N. H.

    Google Scholar 

  • Kilham, S. S., D. A. Kreeger, C. E. Goulden & S. G. Lynn, 1997. Effects of algal food quality on fecundity and population growth rates of Daphnia. Freshwater Biology 38: 639–647.

    Google Scholar 

  • King, C. E., 1982. The evolution of lifespan. In Dingle, H. & Hegmann, J. P. (eds). Evolution and Genetics of Life Histories. Springer Verlag, New York: 121–128.

    Google Scholar 

  • Kirk K. L. 1997. Life-history responses to variable environments: Starvation and reproduction in planktonic rotifers. Ecology 78: 434–441.

    Google Scholar 

  • Koivisto, S., 1995. Is Daphnia magna an ecologically representative zooplankton species in toxicity tests? Environmental Pollution 90: 263–267.

    Article  CAS  PubMed  Google Scholar 

  • Kolar, C. S., J. C. Boase, D. F. Clapp & D. H. Wahl, 1997. Potential effect of invasion by an exotic zooplankter, Daphnia lumholtzi. Journal of Freshwater Ecology 12: 521–530.

    Google Scholar 

  • Kořinek, V. 2002. In Fernando, C. H. (ed.), 2002. Guide to Tropical Freshwater Zooplankton. Identification, Ecology and Impacts on Fisheries. Backhuys Publishers, The Netherlands: 69–97.

    Google Scholar 

  • Kulshrestha, S. K., U. N. Adholia, A. Bhatnagar, A. A. Khan & M. Baghail, 1991. Community structure of zooplankton at River Chambal near Nagda with reference to industrial pollution. Acta Hydrochimica et Hydrobiologica 19: 181–191.

    Google Scholar 

  • Lampert, W., 1977. Studies on the carbon balance of Daphnia pulex de Geer as related to environmental conditions. IV. Determination of “threshold” concentration as a factor controlling the abundance of zooplankton species. Archiv für Hydrobiologie Supplement 48: 361–368.

    Google Scholar 

  • Lampert, W. & U. Sommer, 1997. Limnoecology. The Ecology of Lakes and Streams. Oxford University Press, New York, 1–382.

    Google Scholar 

  • Lass, S. & P. Spaak, 2003. Chemically induced anti-predator defences in plankton: a review. Hydrobiologia 491: 221–239.

    Article  Google Scholar 

  • Lemke, A. M. & A. C. Benke, 2003. Growth and reproduction of three cladoceran species from a small wetland in the south-eastern USA. Freshwater Biology 48: 589–603.

    Article  Google Scholar 

  • Lennon, J. T., V. H. Smith & K. Williams, 2001. Influence of temperature on exotic Daphnia lumholtzi and implications for invasion success. Journal of Plankton Research 23: 425–434.

    Article  Google Scholar 

  • Luening, J., 1992. Phenotypic plasticity of Daphnia pulex in the presence of invertebrate predators: morphological and life history responses. Oecologia 92: 383–390.

    Google Scholar 

  • Lürling, M. & E. Van Donk, 1997. Life history consequences for Daphnia pulex feeding on nutrient-limited phytoplankton. Freshwater Biology 38: 619–628

    Google Scholar 

  • Lürling, M., H. J. De Lange & E. Van Donk, 1997. Changes in food quality of the green alga Scenedesmus induced by Daphnia infochemicals: biochemical composition and morphology. Freshwater Biology 38: 693–709.

    Google Scholar 

  • Lynch, M., 1980. The evolution of cladoceran life histories. Quarterly Reviews of Biology 55: 23–42.

    Google Scholar 

  • Lynch, M., 1992. The life history consequences of resource depression in Ceriodaphnia quadrangula and Daphnia ambigua. Ecology 73: 1620–1629.

    Google Scholar 

  • Maier, G., 1993. The life histories of two temporarily coexisting, pond dwelling cladocerans. Internationale Revue der gesamten Hydrobiologie 78: 83–93.

    Google Scholar 

  • Manca, M. & R. de Bernardi, 1985. Energy budget and evolutive strategies in two cladocerans: Daphnia obtusa kurtz and Simocephalus vetulus (O. F. Müller). Memorie dell Istituto italiano di idrobiologia 43: 119–145

    Google Scholar 

  • Manca, M., C. Ramoni & P. Comoli, 2000. The decline of Daphnia hyalina galeata in Lago Maggiore: a comparison of the population dynamics before and after oligotrophication Aquatic Sciences 62: 142–153.

    Article  Google Scholar 

  • Mangas-Ramírez, E., S. S. S. Sarma & S. Nandini, 2002. Combined effects of algal (Chlorella vulgaris) density and ammonia concentration on the population dynamics of Ceriodaphnia dubia and Moina macrocopa (Cladocera). Ecotoxicology and Environmental Safety 51: 216–222

    PubMed  Google Scholar 

  • Matveev, V. F., 1987. Effect of competition on the demography of planktonic cladocerans — Daphnia and Diaphanosoma. Oecologia 74: 468–477.

    Article  Google Scholar 

  • McKee, D. & D. Ebert, 1996. The effect of temperature on maturation threshold body-length Daphnia magna. Oecologia 108: 627–630.

    Google Scholar 

  • McKee, D., D. Atkinson, S. Collings, J. Eaton, I. Harvey, T. Heyes, K. Hatton, D. Wilson & B. Moss, 2002. Macrozooplankter responses to simulated climate warming in experimental freshwater microcosms. Freshwater Biology 47:1557–1570

    Article  Google Scholar 

  • Mohamed, Z. A. & D. H. Smith, 2001. Accumulation of cyanobacterial hepatotoxins by Daphnia in some Egyptian irrigation canals. Ecotoxicology and Environmental safety 50: 4–8.

    Article  CAS  PubMed  Google Scholar 

  • Mooij, W. M., S. Hülsmann, J. Vijverberg, A. Veen & E. H. R. R. Lammens, 2003. Modeling Daphnia population dynamics and demography under natural conditions. Hydrobiologia 491: 19–34.

    Article  Google Scholar 

  • Moore, M. M., C. L. Folt & R. S. Stemberger, 1996. Consequences of elevated temperature for zooplankton assemblages in temperate lakes. Archiv für Hydobiologie 135: 289–319.

    Google Scholar 

  • Muro-Cruz, G., S. Nandini & S. S. S. Sarma, 2002. Comparative life table demography and population growth of Alona rectangula and Macrothrix triserialis (Cladocera: Crustacea) in relation to algal (Chlorella vulgaris) food density. Journal of Freshwater Ecology 17: 1–11.

    Google Scholar 

  • Nandini, S., 2000. Responses of rotifers and cladocerans to Microcystis aeruginosa (Cyanophyceae): a demographic study. Aquatic Ecology 34: 227–242

    Article  Google Scholar 

  • Nandini, S. & T. R. Rao, 1998. Somatic and population growth in selected cladoceran and rotifer species offered the cyanobacterium Microcystis aeruginosa as food. Aquatic Ecology 31: 283–298.

    Google Scholar 

  • Nandini, S. & S. S. S. Sarma, 2000. Lifetable demography of four cladoceran species in relation to algal food (Chlorella vulgaris) density. Hydrobiologia 435: 117–126.

    Article  Google Scholar 

  • Nandini, S. & S. S. S. Sarma, 2002. Competition between Moina macrocopa and Ceriodaphnia dubia: a life table demography study. International Review of Hydrobiology 87: 85–95.

    Article  Google Scholar 

  • Nandini, S. & S. S. S. Sarma, 2003. Population growth of some genera of cladocerans (Cladocera) in relation to algal food (Chlorella vulgaris) levels. Hydrobiologia 491: 211–219

    Article  Google Scholar 

  • Nandini, S., G. Muro-Cruz & S. S. S. Sarma, 2002. Competition between littoral cladocerans Macrothrix triserialis and Alona rectangula (Cladocera) in relation to algal food level and inoculation density. Acta Hydrochimica et Hydrobiologica 30: 16–23

    CAS  Google Scholar 

  • Nandini, S., S. S. S. Sarma & T. R. Rao, 1998. Effect of coexistence of the population growth of rotifers and cladocerans. Russian Journal of Aquatic Ecology 8: 1–10.

    Google Scholar 

  • Nelson, W. A., E. McCauley & F. J. Wrona, 2001. Multiple dynamics in a single predator-prey system: experimental effects of food quality. Proceedings of the Royal Society, London B 268: 1223–1230.

    Google Scholar 

  • Nix, M. H. & D. G. Jenkins, 2000. Life history comparisons of Daphnia obtusa from temporary ponds, cultured with low quality food. Aquatic Ecology 34: 19–27.

    Article  Google Scholar 

  • Orcutt, J. D. Jr., 1985. Food level effects on the competitive interactions of two co-occurring cladoceran zooplankton: Diaphanosoma brachyurum and Daphnia ambigua. Ergebnisse der Limnologie 21: 465–473.

    Google Scholar 

  • Pattinson, K. R., J. E. Havel, R. G. Rhodes, 2003. Invasibility of a reservoir to exotic Daphnia lumholtzi: experimental assessment of diet selection and life history responses to cyanobacteria. Freshwater Biology 48: 233–246

    Article  Google Scholar 

  • Petrusek, A., 2002. Moina (Crustacea: Anomopoda, Moinidae) in the Czech Republic: a review. Acta Societas Zoologicae Bohemicae 66: 213–220.

    Google Scholar 

  • Porter, K. G. & J. D. Orcutt, Jr. 1977. Nutritional adequacy, manageability, and toxicity as factors that determine the food quality of green and blue-green algae for Daphnia. In Kerfoot, W.C. (ed.), Evolution and Ecology of Zooplankton communities. University press of New England, Hanover, NH: 268–281.

    Google Scholar 

  • Reede, T. & J. Ringelberg, 1995. The influence of a fish exudate on two clones of the hybrid Daphnia galeata x hyalina. Hydrobiologia 307: 207–212.

    Article  Google Scholar 

  • Rhode, S. C., M. Pawlowski & R. Tollrian, 2001. The impact of ultraviolet radiation on the vertical distribution of zooplankton of the genus Daphnia. Nature 412: 69–72.

    Article  CAS  PubMed  Google Scholar 

  • Roff, D. A., 2001. Age and size at maturity. In Fox, C. W., Roff, D. A. & Fairbairn, D.J. (eds), Evolutionary Ecology. Concepts andCase Studies. OxfordUniversity Press, NewYork: 99–127.

    Google Scholar 

  • Rojas, N. E. T., M. A. Marins & O. Rocha, 2001. The effect of abiotic factors on the hatching of Moina micrura Kurz, 1874 (Crustacea: Cladocera) ephippial eggs. Brazilian Journal of Biology 61: 371–376.

    Article  CAS  Google Scholar 

  • Romanovsky, Y. E., 1984. Individual growth rate as a measure of competitive advantages in cladoceran crustaceans. Internationale Revue der gesamten Hydrobiologie 69: 613–632.

    Google Scholar 

  • Rose, R. M., M. S. J. Warne & R. P. Lim, 2000. Life history responses of the cladoceran Ceriodaphnia cf. dubia to variation in food concentration. Hydrobiologia 427: 59–64.

    Article  Google Scholar 

  • Saunders, P. A., K. G. Porter & B. E. Taylor, 1999. Population dynamics of Daphnia spp. and implications for trophic interactions in small, monomictic lake. Journal of Plankton Research 21: 1823–1845.

    Article  Google Scholar 

  • Shrivastava, Y., G. G. Mahambre, C. T. Achuthankutty, B. Fernandes, S. C. Goswami & M. Madhupratap, 1999. Parthenogenetic reproduction of Diaphanosoma celebensis (Crustacea: Cladocera). Effect of algae and algal density on survival, growth, life span and neonate production. Marine Biology 135: 663–670.

    Article  Google Scholar 

  • Sipaúba-Tavares, L. H. & M. A. Bachion, 2002. Population growth and development of two species of Cladocera, Moina micrura and Diaphanosoma birgei, in laboratory. Brazilian Journal of Biology 62: 701–711.

    Google Scholar 

  • Ślusarczyk, M., 1997. Impact of fish predation on a smallbodied cladoceran: Limitation or stimulation? Hydrobiologia 342/343: 215–221.

    Google Scholar 

  • Sterner, R. W., 1998. Demography of a natural population of Daphnia retrocurva in a lake with low food quality. Journal of Plankton Research 20: 471–489.

    Google Scholar 

  • Stibor, H., 1992. Predator induced life-history shifts in a freshwater cladoceran. Oecologia 92: 162–165.

    Article  Google Scholar 

  • Stockwell, J. D. & O. E. Johannsson, 1997. Temperaturedependent allometric models to estimate zooplankton production in temperate freshwater lakes. Canadian Journal of Fisheries and Aquatic Sciences 54: 2350–2360.

    Google Scholar 

  • Taylor, D. J., P. D. N. Hebert & J. K. Colbourne, 1996. Phylogenetics and evolution of the Daphnia longispina group (Crustacea) based on 12S rDNA sequence and allozyme variation. Molecular Phylogenetics and Evolution 5: 495–510.

    Article  CAS  PubMed  Google Scholar 

  • Timotius, K. H. & F. Goltenboth, 1995. Tropical Limnology. Salatiga, Indonesia.

    Google Scholar 

  • Tessier, A. J., 1986. Life history and body size evolution in Holopedium gibberum Zaddach (Crustacea, Cladocera). Freshwater Biology 16: 279–286.

    Google Scholar 

  • Urabe, J., 1991. Effect of food concentration on growth, reproduction and survivorship of Bosmina longirostris (Cladocera): an experimental study. Freshwater Biology 25: 1–8.

    Google Scholar 

  • Urabe, J., J. Clasen & R. W. Sterner, 1997. Phosphorus limitation of Daphnia growth: Is it real? Limnology and Oceanography 42: 1436–1443.

    CAS  Google Scholar 

  • Vanni, M. J. & W. Lampert, 1992. Food quality effects on life history traits and fitness in the generalist herbivore Daphnia. Oecologia 92: 48–57.

    Article  Google Scholar 

  • Venkataraman, K., 1990. Life-history studies on some Cladocera under laboratory conditions. Journal of the Andaman Science Association, Port Blair 6: 127–132.

    Google Scholar 

  • Wacker, A., E. Von Elert & M. D. Bertness, 2001. Polyunsaturated fatty acids: evidence for non-substitutable biochemical resources in Daphnia galfeata. Ecology 82: 2507–2520.

    Google Scholar 

  • Wærvågen, S. B., N. A. Rukke & D. O. Hessen, 2002. Calcium content of crustacean zooplankton and its potential role in species distribution. Freshwater Biology 47: 1866–1878.

    Google Scholar 

  • Walls, M., C. Lauren-Määttä, M. Ketola, P. Ottra-Aho, M. Reinikainen & S. Repka, 1997. Phenotypic plasticity of Daphnia life history traits: the roles of predation, food level and toxic cyanobacteria. Freshwater Biology 38: 353–364.

    Article  Google Scholar 

  • Wang, Y. & Z. He, 2001. Effect of temperature and salinity on intrinsic increasing rate of Moina mongolica Daddy (Cladocera: Moinidae) population. Yingyong Shengtai Xuebao 12:91–94.

    CAS  PubMed  Google Scholar 

  • Weber, A., S. Vesela & S. Repka, 2003. The supposed lack of trade-off among Daphnia galeata life history traits is explained by increased adult mortality in Chaoborus conditioned treatments. Hydrobiologia 491: 273–287.

    Article  Google Scholar 

  • Weers, P. M. M. & R. D. Gulati, 1997. Effect of the addition of polyunsaturated fatty acids to the diet on the growth and fecundity of Daphnia galeata. Freshwater Biology 38: 721–729.

    CAS  Google Scholar 

  • Weetman D. & D. Atkinson, 2004. Evaluation of alternative hypotheses to explain temperature-induced life history shifts in Daphnia. Journal of Plankton Research 26: 107–116.

    Article  Google Scholar 

  • Whitton, B. A. & M. Potts (eds), 2000. The Ecology of Cyanobacteria. The diversity in time and space. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Williams, D. D., 1987. The Ecology of Temporary Waters. Croom Helm. London/Sidney, Timber Press, Oregon.

    Google Scholar 

  • Yurista, P. M., 1999. Temperature-dependent energy budget of an Arctic cladoceran, Daphnia middendorffiana. Freshwater Biology 42: 21–34.

    Article  Google Scholar 

  • Zadereev, Y. S., 2003. Maternal effects, conspecific chemical cues and switching from parthenogenesis to gametogenesis in the cladoceran Moina macrocopa. Aquatic Ecology 37: 251–255.

    Article  CAS  Google Scholar 

  • Zafar, A. R., 1986. Seasonality of phytoplankton in some South Indian lakes. Hydrobiologia, 138: 177–187.

    Article  Google Scholar 

  • Zimmer, D. J. & J. F. Storr, 1984. The effects of environmental pH on life history parameters of Daphnia parvula (Crustacea; Cladocera). Proceedings of the second New York State symposium on atmospheric deposition, New York: 209–216.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Sarma1, S.S.S., Nandini, S., Gulati, R.D. (2005). Life history strategies of cladocerans: comparisons of tropical and temperate taxa. In: Segers, H., Martens, K. (eds) Aquatic Biodiversity II. Developments in Hydrobiology, vol 180. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4111-X_29

Download citation

Publish with us

Policies and ethics