Skip to main content

Mechanisms of plant resistance to metal and metalloid ions and potential biotechnological applications

  • Chapter
Book cover Root Physiology: from Gene to Function

Part of the book series: Plant Ecophysiology ((KLEC,volume 4))

Abstract

Metal and metalloid resistances in plant species and genotypes/accessions are becoming increasingly better understood at the molecular and physiological level. Much of the recent focus into metal resistances has been on hyperaccumulators as these are excellent systems to study resistances due to their very abnormal metal(loid) physiology and because of their biotechnological potential. Advances into the mechanistic basis of metal(loid) resistances have been made through the investigation of metal(loid) transporters, the construction of mutants with altered metal(loid) transport and metabolism, a better understanding of the genetic basis of resistance and hyperaccumulation and investigations into the role of metal(loid) ion chelators. This review highlights these recent advances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Assuncao A G L, Martins P D, De Folter S, Vooijs R, Sehat H and Aarts M G M 2001 Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ. 24, 217–226.

    CAS  Google Scholar 

  • Assuncao A G L, Ten Bookum W M, Nelissen H J M, Vooijs R, Schat H and Ernst W H O 2003 A cosegregation analysis of zinc (Zn) accumulation and Zn tolerance in the Zn hyperaccumulator Thlaspi caerulescens. New Phytol. 159, 383–390.

    CAS  Google Scholar 

  • Baker A J M and Whiting S N 2002 In search of the Holy Grail — a further step in understanding metal hyperaccumulation? New Phytol. 155, 1–3.

    Article  Google Scholar 

  • Bert V, Macnair M R, DeLaguerie P, Saumitou-Laprade P and Petit D 2000 Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae). New Phytol. 146, 225–233.

    Article  CAS  Google Scholar 

  • Bert V, Meerts P, Saumitou-Laprade P, Salis P, Gruber W and Verbruggen N 2003 Genetic basis of CM tolerance and hyperaccumulation in Arabidopsis halleri. Plant Soil 249, 9–18.

    Article  CAS  Google Scholar 

  • Bizily S P, Rugh C L and Meagher R B 2000 Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nature Biotechnol. 18, 213–217.

    CAS  Google Scholar 

  • Bloss T, Clemens S and Nies D H 2002 Characterisation of the ZATlp zinc transporter from Arabidopsis thaliana in a microbial model organisms and reconstituted proteoliposomes. Planta 214, 783–791.

    CAS  PubMed  Google Scholar 

  • Bradley R, Burt A J and Read D J 1981 Mycorrhizal infection and resistance to heavy-metal toxicity in Calluna vulgaris. Nature 292, 335–337.

    CAS  Google Scholar 

  • Bradshaw A D, McNeilly T and Putwain P D 1989 The Essential Qualities. In Heavy Metal Toletances in Plants: Evolutionary Aspects. Ed. A J Shaw. pp. 323–344. CRC Press, Boca Ranton, Florida.

    Google Scholar 

  • Chardonnens A N, Koeveots P L M, van Zanten A, Schat H and Verkleij J A C 1999 Properties of enhanced tonoplast zinc transport in naturally selected zinc-tolerant Silene vulgaris. Plant Physiol. 120, 779–785.

    Article  CAS  PubMed  Google Scholar 

  • Clemens S 2001 Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212, 475–486.

    Article  CAS  PubMed  Google Scholar 

  • Cobbett C S 2000 Phytochelatins and their roles in heavy metal detoxification. Plant Physiol. 123, 825–832.

    Article  CAS  PubMed  Google Scholar 

  • Cobbett C S, Hussain D and Haydon M J 2003 Structural and functional relationships between type 1B heavy metaltransporting ATPases in Arabidopsis. New Phytol. 159, 315–321.

    CAS  Google Scholar 

  • Dhankher O P, Li Y, Rosen B P, Shi J, Salt D, Senecoff J F, Sashti N A and Meagher R B 2002 Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression Nature Biotech. 20, 1140–1145.

    Article  CAS  Google Scholar 

  • Dhankher O P, Shastri N A, Rosen B P, Fuhrmann M and Meagher R B 2003 Increased cadmium tolerance and accumulation by plants expressing bacterial arsenate reductase New Phytol. 159, 431–441.

    Article  CAS  Google Scholar 

  • Dubois S, Cheptou PO, Petit C, Meerts P, Poncelet M, Vekermans X, Lefebvre C, Escarre J, 2003 Genetic structure and mating systems of metallicolous and nonmetallicolous populations of Thlaspi caerulescens 157, 633–641.

    Google Scholar 

  • Ebbs S, Lau I, Ahner B and Kochian L 2002 Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescences (J. and C. Presl) Planta 214, 635–640.

    Article  CAS  PubMed  Google Scholar 

  • Ernst W H O 2000 Evolution of metal hyperaccumulation and phytoreraediation hype. New Phytol. 146, 357–358.

    Article  Google Scholar 

  • Ferrot H, Petit C, Lefebvre C, Gruber W, Colin C and Esxarre J 2003 Zinc and cadmium accumulation in controlled crosses between metallicolous and nonmetallicolous populations of Thlaspi caerulescens (Brassicacea). New Phytol. 157, 643–648.

    Google Scholar 

  • Hanson B, Garifullina G F, Lindblom S D, Wangeline A, Ackley A, Kramer K, Norton A P, Lawrence C B and Pilon-Smits E A H 2003 Selenium accumulation protects Brassica juncea from invertebrate herbivory and fungal infection. New Phytol. 159, 461–469.

    Article  CAS  Google Scholar 

  • Hartley-Whitaker J, Ainswort G and Meharg A A 2001 Copper and arsenate induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ. 24, 713–722.

    Article  CAS  Google Scholar 

  • Hartley-Whitaker J, Ainswort G and Meharg A A 2002 Is differential phytochelatin production related to decreased arsenate influx in arsenate tolerant Holcus lanatus L.? New Phytol. 155, 219–225.

    Article  CAS  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G A, Vooijs R, Ten Bookum W, Schat H and Meharg A A 2001 Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus L. Plant Physiol. 126, 299–306.

    Article  CAS  PubMed  Google Scholar 

  • Huitson S B and Macnair M R 2003 Does zinc protect the zinc hyperaceumulator Arabidopsis halleri from herbivory by snails? New Phytol. 159, 453–459.

    Article  CAS  Google Scholar 

  • Hutchinson J J, Young S D, McGrath S P, West H M, Black C R and Baker A J M 2000 Determining uptake of ‘non-labile’ soil cadmium by Thlaspi caerulescens using isotopic dilution techniques New Phytol. 146, 453–460.

    Article  CAS  Google Scholar 

  • Kramer U, Cotter-Howells J D, Charnock J M, Baker A J M and Smith J A C 1996 Free histidine as a metal chelator in plants that accumulate nickel Nature 379, 635–638.

    CAS  Google Scholar 

  • Kramer U and Chardonnens A N 2001 The use of transgenic plants in the bioremediation of soils contaminated with trace elements Appl. Microb. Biotechnol. 55, 661–672.

    CAS  Google Scholar 

  • Kramer U, Pickering I J, Prince R C, Raskin I and Salt D E 2000 Subcellular localization and speciation of nickel in hyper-accumulator and non-hyperaccumulator Thlaspi species Plant Physiol. 122, 1343–1353.

    Article  CAS  PubMed  Google Scholar 

  • Kramer U, Smith R D, Wenzel W W, Raskin I and Salt D E 1997 The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Halacsy. Plant Physiol. 115, 1641–1650.

    CAS  PubMed  Google Scholar 

  • Kruckberg A R and Kruckberg A L 1989 Endemic metallophytes: their taxonomic, genetic, and evolutionary attributes. In Heavy Metal Toletances in Plants: Evolutionary Aspects. Ed. A J Shaw., pp. 301–312. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Kupper H, Lombi E, Zhao F J and McGrath 2000 Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaceumulator Arabidopsis halleri. Planta 212, 75–84.

    CAS  PubMed  Google Scholar 

  • Lambers H and Poorter H 1992 Inherent variation in growthrate between higher-plants — a search for physiological causes and ecological consequences. Adv. Ecol. Res 23, 187–261.

    CAS  Google Scholar 

  • Lasat M L 2002 Phytoextraction of toxic metals: a review of biological mechanisms. J. Environ. Qual. 31, 109–120.

    CAS  PubMed  Google Scholar 

  • Lasat M M, Baker A J M and Kochian L V 1996 Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaceumulator and nonaccumulator species of Thlaspi. Plant Physiol. 112, 1715–1722.

    CAS  PubMed  Google Scholar 

  • Lasat M M, Baker A J M and Kochian L V 1998 Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens. Plant Physiol. 118, 875–883.

    Article  CAS  PubMed  Google Scholar 

  • Lee D A, Chen A and Schroeder J I 2003 ars1, an Arabidopsis mutant exhibiting increased tolerance to arsenate and increased phosphate uptake Plant J. 35, 637–646.

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Moon J S, Ko T-S, Petros D, Goldsbrough P B and Korban S 2003 Overexpression of Arabidopsis phytochelatins synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol. 131, 656–663.

    CAS  PubMed  Google Scholar 

  • Lombi E, Zhao F J, McGrath S P, Young S D and Sacchi G A 2001 Physiological evidence for a high-affinity cadmium transporter highly expressed in Thlaspi caerulescens ecotype. New Phytol. 149, 53–60.

    Article  CAS  Google Scholar 

  • Ma L Q, Komar K M, Tu C, Zhang W and Cai Y 2001 A fern that hyperaccumulates arsenic Nature. 409, 579.

    Article  CAS  PubMed  Google Scholar 

  • Ma M, Lau P-S, jia Y-T, Tsang W-K, Lam S K S, Tarn N F Y and Wong Y-S 2003 The isolation and characterisation of type 1 metallothionein (MT) cDNA from a heavy-metaltolerant plant, Festuca rubra cv Merlin. Plant Sci. 164, 51–60.

    CAS  Google Scholar 

  • Macnair M R 1993 The genetics of metal tolerance in vascular plants. New Phytol. 124, 541–559.

    CAS  Google Scholar 

  • Macnair M R, Bert V, Huitson S B, Saumitou-Laprade P and Petit D 1999 Proc. Royal Soc. Lond. Series B. 266, 2175–2179.

    CAS  Google Scholar 

  • McGrath S P and Zhao F J 2003 Phytoextraction of metals and metalloids from contaminated soils. Curr. Opin. Biotechnol. 14, 277–282.

    Article  CAS  PubMed  Google Scholar 

  • Meharg A A 1993 The role of the plasmalemma in metal tolerance in angiosperms. Physiol. Plant. 88, 191–198.

    Article  CAS  Google Scholar 

  • Meharg A A 1994 Integrated tolerance mechanisms: constitutive and adaptive plant responses to elevated metal concentrations in the environment Plant Cell Environ. 17, 989–993.

    CAS  Google Scholar 

  • Meharg A A 2002 Arsenic and old plants. New Phytol. 156, 1–4.

    Article  Google Scholar 

  • Meharg A A 2003 Variation in arsenic accumulation — hyperaccumulation in ferns and their allies. New Phytol. 157, 25–31.

    CAS  Google Scholar 

  • Meharg A A and Hartley-Whitaker J 2002 Arsenic uptake and metabolism in arsenic resistant and non-resistant plant species. New Phytol. 154, 29–43.

    Article  CAS  Google Scholar 

  • Meharg A A and Macnair M R 1992 Genetic correlation between arsenate tolerance and the rate of arsenate and phosphate uptake in Holcus lanatus L. Heredity 69, 336–341.

    CAS  Google Scholar 

  • Meharg A A, Naylor J and Macnair M R 1994 Phosphorus nutrition of arsenate-tolerant and non-tolerant phenotypes of velvet grass J. Environ. Qual. 23, 234–238.

    CAS  Google Scholar 

  • Navarro S X, Dziewatkoski M P and Enyedi A J 1999 Isolation of cadmium excluding mutants of Arabidopsis thaliana using a vertical mesh transfer system and ICP-MS. J. Environ. Sci. Health A 34, 1797–1813.

    Google Scholar 

  • Pence N S, Larsen P B, Ebbs S D, Letham D L D, Lasat M M, Garvin D F, Eide D and Kochian L V 2000 The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc. Nat. Ac. Sci. 97, 4956–4960.

    CAS  Google Scholar 

  • Pickering I J, Hirsch G, Prince R C, Sneeden E Y, Salt D E and George G N 2003 Imaging of selenium in plants using tapered metal monocapillary optics. J. Synchotron Radiat. 10, 289–290.

    CAS  Google Scholar 

  • Pickering I J, Prince R C, George M J, Smith R D, George G N and Salt D E 2000 Reduction and coordination of arsenic in Indian mustard. Plant Physiol. 122, 1171–1177.

    Article  CAS  PubMed  Google Scholar 

  • Persans M W, Nieman K and Salt D E 2001 Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc. Natl. Acad. Sci. U.S.A. 98, 9995–10000.

    Article  CAS  PubMed  Google Scholar 

  • Raab A, Feldmann J and Meharg A A 2003 The nature of arsenic-phytochelatins complexes in Holcus lanatus and Pteris cretica. Plant Physiol. 134, 1113–1122.

    Google Scholar 

  • Salt D E, Prince R C, Baker A J M, Raskin I and Pickering I J 1999 Zinc ligands in the metal hyperaccumlator Thlaspi caerulecens as determined using X-ray spectroscopy. Environ. Sci. Technol. 33, 713–717.

    Article  CAS  Google Scholar 

  • Sarret G, Saumitou-Laprade P, Bert V, Proux O, Hazemann J L, Traverse A S, Marcus M A and Manceau A 2002 Forms of zince accumulated in the hyperaccuralator Arabidopsis halleri. Plant Physiol. 130, 1815–1826.

    Article  CAS  PubMed  Google Scholar 

  • Schat H, Llugany M, Vooijs R, Hardey-Whitaker J and Bleeker P M 2002 The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator metallophytes. J. Exp. Bot. 53, 2382–2392.

    Article  Google Scholar 

  • Schulman R N, Salt D E and Raskin I 1999 Isolation and partial charcterisation of a lead-accumulating Brassica juncea mutant. Theor. Appl. Genet. 99, 398–404.

    Article  CAS  Google Scholar 

  • Thomas J C, Davies E C, Malick F K, Endreszl C, Williams C R, Abbas M, Petrella S, Swisher K, Perron M, Edwards R, Osten-kowski P, Urbanczyk N, Wiesend W N and Murray K S 2003 Yeast metallothioneins in transgenic tobacco promotes copper uptake from contaminated soils. Biotechnol. Prog. 19, 273–280.

    Article  CAS  PubMed  Google Scholar 

  • Vacchina V, Mari S, Czernic P, Marques L, Pianelli K, Schaumloffel D, Lebrun M and Lobinsfci R 2003 Speciation of nickel in a hyperaccumulating plant by high-performance-inductively coupled plasma mass spectrometry and electrospray MS/MS assisted by cloning using yeast complementation. Anal. Chem. 2740–2745.

    Google Scholar 

  • van der Zaal B J, Neuteboom L W, Pinas J E, Chardonnens A N, Schat H, Verkleij J A C and Hooykaas P J J 1999 Overexpiession of a novel Arabidopsis gene related to putative zinctransporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol. 119, 1047–1055.

    PubMed  Google Scholar 

  • van Hoof N A L M, Hassinen V H, Hakvoort H W K, Ballintijn K F, Schat H, Verkleij J A C, Ernst W H O, Karenlampi S O and Tervahauta A I 2001 Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2btype metallothioneins gene. Plant Physiol. 1519–1526.

    Google Scholar 

  • Vacchina V, Mari S, Czernic P, Marques L, Pianelli K, Schaumloffel D, Lebrun M and Lobinski R 2003 Speciation of nickel in a hyperaccumulating plant by high-performance-inductively coupled plasma mass spectrometry and electrospray MS/MS assisted by using yeast complementation. Anal. Chem. 75, 2740–2745.

    Article  CAS  PubMed  Google Scholar 

  • Whiting S N, Leake J R, McGrath S P and Baker A J M 2000 Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytol. 145, 99–210.

    Article  Google Scholar 

  • Zhu Y L, Pilon-Smits E A H, Tarun A S, Weber S U, Jouanin L and Terry N 1999 Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol 121, 1169–1177.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hans Lambers Timothy D. Colmer

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Meharg, A.A. (2005). Mechanisms of plant resistance to metal and metalloid ions and potential biotechnological applications. In: Lambers, H., Colmer, T.D. (eds) Root Physiology: from Gene to Function. Plant Ecophysiology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4099-7_8

Download citation

Publish with us

Policies and ethics