Skip to main content

Root defense responses to fungal pathogens: A molecular perspective

  • Chapter
Root Physiology: from Gene to Function

Part of the book series: Plant Ecophysiology ((KLEC,volume 4))

Abstract

This review will focus on the molecular and genetic mechanisms underlying defense responses of roots to fungal pathogens. Soil-borne pathogens, including Phytophthora, Pythium, Fusarium, and Bipolaris, represent major sources of biotic stress in the rhizosphere and roots of plants. Molecular recognition and signaling leading to effective resistance has been demonstrated to occur between host and Phytophthora, or Pythium. The hypersensitive response and apoptotic cell death, two oxidative processes that limit biotrophic pathogens, generally act to exacerbate disease symptoms induced by necrotrophic organisms. Although pathogenesis-related proteins can be expressed in roots during pathogen challenge, salicylic acid has not been implicated in root-mediated interactions. Jasmonic acid and ethylene have been found to mediate parallel as well as synergistic pathways that confer partial tolerance to necrotrophic pathogens, as well as induced systemic resistance to root and foliar pathogens. Genomics approaches are revealing new networks of defense-signaling pathways, and have the potential of elucidating those pathways that are important in root-defense responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

CEVI:

constitutive expression of VSPI (vegetative storage protein 1)

COI1:

coronatineinsensitive 1

E:

ethylene

EDS:

enhanced disease susceptibility

EIN:

ethylene-insensitive

ERF1:

ethylene response factor 1

ETR:

ethylene resistant

fad :

fatty acid desaturation

Ggt :

Gaeumannomyces graminis var. tritici

HR:

hypersensitive response

LRR:

leucine-rich repeat protein motif

JA:

jasmonic acid/jasmonate

NBS:

nucleotide binding site protein motif

PR:

pathogenesis-related

ROS:

reactive oxygen species

SA:

salicylic acid/salicylate

TLP:

thaumatin-like protein

References

  • Asiegbu F O, Kacprzak M, Daniel G, Johansson M, Stenlid J and Maka M 1999 Biochemical interactions of conifer seedling root with Fusarium spp. Can. J. Microbiol. 45, 923–935.

    Article  CAS  Google Scholar 

  • Audenaert K, Pattery T, Cornelis P and Hfte M 2002 Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol. Plant-Microbe Interact. 15, 1147–1156.

    CAS  PubMed  Google Scholar 

  • Baldridge G D, O’Neill N R and Samac D A 1998 Alfalfa (Medicago sativa L.) resistance to the root-lesion nematode, Pratylenchus penetrans: defense-response gene mRNA and isoflavonoid phytoalexin levels in roots. Plant Mol. Biol. 38, 999–1010.

    Article  CAS  PubMed  Google Scholar 

  • Berrocal-Lobo M, Molina A and Solano R 2002 Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J. 29, 23–32.

    Article  CAS  PubMed  Google Scholar 

  • Campion C, Massiot P and Rouxel F 1997 Aggressiveness and production of cell-wall degrading enzymes by Pythium violae, Pythium sulcatum and Pythium ultimum, responsible for cavity spot on carrots. Eur. J. Plant Pathol. 103, 725–735.

    Article  CAS  Google Scholar 

  • Cao-Delgado A, Penfield S, Smith C, Catley M and Bevan M 2003 Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J. 34, 351–362.

    Google Scholar 

  • Chen C, Bélanger R R, Benhamou N and Paulitz T C 1999 Role of salicylic acid in systemic resistance induced by Pseudomonas spp. against Pythium aphanidermatum in cucumber roots. Eur. J. Plant Pathol. 105, 477–486.

    Article  CAS  Google Scholar 

  • Chen C, Bélanger R R, Benhamou N and Paulitz T C 2000 Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiol. Mol. Plant Pathol. 56, 13–23.

    Article  CAS  Google Scholar 

  • Cheong Y H, Chang H-S, Gupta R, Wang X, Zhu T and Luan S 2002 Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol. 129, 661–677.

    Article  CAS  PubMed  Google Scholar 

  • Deacon J W and Donaldson S P 1993 Molecular recognition in the homing responses of zoosporic fungi, with special reference to Pythium and Phytophthora. Mycol. Res. 97, 1153–1171.

    CAS  Google Scholar 

  • Desilets H, Benhamou N and Bélanger R R 1994 A comparative study of histological and ultrastructural alterations induced by Pythium ultimum or its metabolites on geranium (Pelargonium) roots. Physiol. Mol. Plant Pathol. 45, 21–36.

    Article  Google Scholar 

  • Devoto A and Turner J G 2003 Regulation of jasmonate-mediated plant responses in Arabidopsis Ann. Bot. 92, 329–337.

    Article  CAS  PubMed  Google Scholar 

  • Dickman M B, Park Y K, Oltersdorf T, Li W, Clemente T and French R 2001 Abrogation of disease development in plants expressing animal antiapoptotic genes. Proc. Natl. Acad. Sci. 98, 6957–6962.

    Article  CAS  PubMed  Google Scholar 

  • Donaldson S P and Deacon J W 1993 Effects of amino acids and sugars on zoospore taxis, encystment and cyst germination in Pythium aphanidermatum (Edson) Fitzp., P. Catenulatum Matthews and P. dissotocum Drechs. New Phytol. 123, 289–295.

    CAS  Google Scholar 

  • Dorrance A E and Schmitthenner A F 2000 New sources of resistance to Phytophthora sojae in the soybean plant introductions. Plant Dis. 84, 1303–1308.

    CAS  Google Scholar 

  • Driskel B A, Hunger R M, Payton M E and Verchot-Lubicz J 2002 Response of hard red winter wheat to Soilborne wheat mosaic virus using novel inoculations methods. Phytopathology 92, 347–354.

    Google Scholar 

  • Ellis C, Karafyllidis I, Wasternack C and Turner J G 2002 The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14, 1557–1566.

    Article  CAS  PubMed  Google Scholar 

  • Ellis C and Turner J G 2001 The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell 13, 1025–1033.

    Article  CAS  PubMed  Google Scholar 

  • Ellis C and Turner J G 2002 A conditionally fertile coil allele indicates cross-talk between plant hormone signalling pathways in Arabidopsis thaliana seeds and young seedlings. Planta 215, 549–556.

    Article  CAS  PubMed  Google Scholar 

  • Farr D F, Bills G F, Chamuris G P and Rossman A Y 1987 Fungi on Plants and Plant Products in the United States. American Phytopathological Society Press, St. Paul, MN.

    Google Scholar 

  • Feys B J F, Benedetti C E, Penfold C E and Turner J G 1994 Arabidopsis mutants selected for resistance to the phytooxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6, 751–759.

    Article  CAS  PubMed  Google Scholar 

  • Gazzarrini S and McCourt P 2003 Cross-talk in plant hormone signalling: what Arabidopsis mutants are telling us. Ann. Bot. 91, 605–612.

    Article  CAS  PubMed  Google Scholar 

  • Gelvin S B 2000 Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 223–256.

    Article  CAS  PubMed  Google Scholar 

  • Geraats B P J, Bakker P A H M, Lawrence C B, Achuo E A, Hofte M and van Loon L C 2003 Ethylene-insensitive tobacco shows differentially altered susceptibility to different pathogens. Phytopathology 93, 813–821.

    Google Scholar 

  • Geraats B P J, Bakker P A H M and van Loon L C 2002 Ethylene insensitivity impairs resistance to soilborne pathogens in tobacco and Arabidopsis thaliana. Mol. Plant-Microbe Interact. 15, 1078–1085.

    CAS  PubMed  Google Scholar 

  • Gilchrist D G 1998 Programmed cell death in plant disease: the purpose and promise of cellular suicide. Annu. Rev. Phytopathol. 36, 393–414.

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook J, Chen W, Estes B, Chang H-S, Nawarth C, Métraux J-P, Zhu T and Katagiri F 2003 Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J. 34, 217–228.

    Article  CAS  PubMed  Google Scholar 

  • Gowda B S, Riopel J L and Timko M P 1999 NRSA-1: a resistance gene homolog expressed in roots of non-host plants following parasitism by Striga asiatica (witchweed). Plant J. 20, 217–230.

    Article  CAS  PubMed  Google Scholar 

  • Hase S, Van Pelt J A, Van Loon L C and Pieterse C J M 2003 Colonization of Arabidopsis roots by Pseudomonas fluorescens primes the plant to produce higher levels of ethylene upon pathogen infection. Physiol. Mol. Plant Pathol. 62, 219–226.

    Article  CAS  Google Scholar 

  • Heath M C 2000 Nonhost resistance and nonspecific plant defenses. Curr. Opin. Plant Biol. 3, 315–319.

    Article  CAS  PubMed  Google Scholar 

  • Hendrix F F and Campbell W A 1973 Pythiums as plant pathogens. Annu. Rev. Phytopathol. 11, 77–98.

    Article  Google Scholar 

  • Hermanns M, Slusarenko A J and Schlaich N L 2003 Organspecificity in a plant disease is determined independently of R gene signaling. Mol. Plant-Microbe Interact. 16, 752–759.

    CAS  PubMed  Google Scholar 

  • Hirsch J, Deslandes L, Feng D X, Balagué C and Marco Y 2002 Delayed symptom development in ein 2-1, an Arabidopsis ethylene-insensitive mutant, in response to bacterial wilt caused by Ralstonia solanacearum. Phytopathology 92, 1142–1148.

    Google Scholar 

  • Hoffman T, Schmidt J S, Zheng X and Bent A F 1999 Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiol. 119, 935–949.

    Article  CAS  PubMed  Google Scholar 

  • Iavicoli A, Boutet E, Buchala A and Métraux J-P 2003 Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol. Plant-Microbe Interact. 16, 851–858.

    CAS  PubMed  Google Scholar 

  • James R V and Williams P H 1980 Clubroot Plasmodiophora brassicae resistance and linkage in Brassica campestris. Phytopathology 70, 776–779.

    Google Scholar 

  • Knoester M, Pieterse C M J, Bol J F and Van Loon L C 1999 Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application. Mol. Plant-Microbe Interact. 12, 720–727.

    CAS  PubMed  Google Scholar 

  • Knoester M, van Loon L C, van den Heuvel J, Hennig J, Bol J F and Linthorst H J M 1998 Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proc. Natl. Acad. Sci. 95, 1933–1937.

    Article  CAS  PubMed  Google Scholar 

  • Kosslak R M, Dieter J R, Ruff R L, Chamberlin M A, Bowen B A and Palmer R G 1996 Partial resistance to root-borne infection by Phytophthora sojae in three allelic necrotic root mutants in soybean. J. Hered. 87, 415–422.

    Google Scholar 

  • Kunkel B N and Brooks D M 2002 Cross talk between signaling pathways in pathogen defense. Curf. Opin. Plant Biol. 5, 325–331.

    CAS  Google Scholar 

  • Lam E, Kato N and Lawton M 2001 Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411, 848–853.

    Article  CAS  PubMed  Google Scholar 

  • Liljeroth E and Bryngelsson T 2001 DNA fragmentation in cereal roots indicative of programmed root cortical cell death. Physiol. Plantar. 111, 365–372.

    CAS  Google Scholar 

  • Liljeroth E, Santén K and Bryngelsson T 2001 PR protein accumulation in seminal roots of barley and wheat in response to fungal infection—the importance of cortex senescence. J. Phytopathol. 149, 447–456.

    Article  CAS  Google Scholar 

  • Liu L, Kloepper J W and Tuzun S 1995 Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria. Phytopathology 85, 843–847.

    Google Scholar 

  • Lorenzo O, Piqueras R, Sunchez-Serrano J J and Solano R 2003 ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15, 165–178.

    Article  CAS  PubMed  Google Scholar 

  • Loria R, Coombs J, Yoshida M, Kers J and Bukhalid R 2003 A paucity of bacterial root diseases: Streptomyces succeeds where others fail. Physiol. Mol. Plant Pathol. 62, 65–72.

    Article  Google Scholar 

  • Lot H, Campbell R N, Souche S, Milne R G and Roggero P 2002 Transmission by Olpidium brassicae of Mirafiori lettuce virus and Lettuce big-vein virus, and their roles in lettuce big-vein etiology. Phytopathology 92, 288–293.

    Google Scholar 

  • Lumsden R D, Lewis J A and Fravel D R 1995 Formulation and delivery of biocontrol agents for use against soilborne plant pathogens. In Biorational Pest Control Agents, Formulation and Delivery. Eds. FR Hall and JW Barry. pp 166–182. American Chemical Society, Washington, DC.

    Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Métraux J-P and Défago G 1994 Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: influence of the gacA gene and pyoverdine production. Phytopathology 84, 139–146.

    CAS  Google Scholar 

  • Maurhofer M, Reimmann C, Schmidli-Sacherer P, Heeb S, Haas D and Défago G 1998 Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology 88, 678–684.

    CAS  Google Scholar 

  • McConn M, Creelman R A, Bell E, Mullet J E and Browse J 1997 Jasmonate is essential for insect defense in Arabidopsis. Proc. Natl. Acad. Sci. 94, 5473–5477.

    Article  CAS  PubMed  Google Scholar 

  • Mes J J, van Doom A A, Wijbrandi J, Simons G, Cornelissen B J C and Haring M A 2000 Expression of the Fusarium resistance gene I-2 colocalizes with the site of fungal containment. Plant J. 23, 183–193.

    Article  CAS  PubMed  Google Scholar 

  • Mylona P, Moerman M, Yang W-C, Gloudemans T, Van De Kerckhove J, van Kammen A, Bisseling T and Franssen HJ 1994 The root epidermis-specific pea gene RH2 is homologous to a pathogenesis-related gene. Plant Mol. Biol. 26, 39–50.

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulou K, Melton R E, Leggett M, Daniels M J and Osbourne A E 1999 Compromised disease resistance in a saponin-deficient plants. Proc. Natl. Acad. Sci. 96, 12923–12928.

    Article  CAS  PubMed  Google Scholar 

  • Park K S and Kloepper J W 2000 Activation of PR-la promoter by rhizobacteria that induce systemic resistance in tobacco against Pseudomonas syringae pv. tabaci. Biol. Cont. 18, 2–9.

    CAS  Google Scholar 

  • Parmeter J R, Ed. 1970. Rhizoctonia solani: Biology and Pathology. University of California Press, Berkeley, CA.

    Google Scholar 

  • Picard K, Ponchet M, Blein J-P, Rey P, Tirilly Y and Benhamou N 2000 Oligandrin. A proteinaceous molecule produced by the mycoparasite Pythium oligandrum induces resistance to Phytophthora parasitica infection in tomato plants. Plant Physiol. 124, 379–395.

    Article  CAS  PubMed  Google Scholar 

  • Pieterse C M J and van Loon L C 1999 Salicylic acid-independent plant defence pathways. Trends Plant Sci. 4, 52–58.

    Article  PubMed  Google Scholar 

  • Pieterse C J M, van Pelt J A, Ton J, Parchmann S, Mueller M J, Buchala A J, Métraux J-P and Van Loon L C 2000 Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol. Mol. Plant Pathol. 57, 123–134.

    Article  CAS  Google Scholar 

  • Pieterse C M J, van Wees S C M, van Pelt J A, Knoester M, Laan R, Gerrits H, Weisbeek P J and van Loon L C 1998 A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10, 1571–1580.

    Article  CAS  PubMed  Google Scholar 

  • Piffanelli P, Devoto A and Schulze-Lefert P 1999 Defence signaling pathways in cereals. Curr Opin. Pant Biol. 2, 295–300.

    CAS  Google Scholar 

  • Ramonell K M, Zhang B, Ewing R M, Chen Y, Xu D, Stacey G and Somerville S 2002 Microarray analysis of chitin elicitation in Arabidopsis thaliana. Mol. Plant Pathol. 3, 301–311.

    Article  CAS  Google Scholar 

  • Ruttledge T R and Nelson E B 1997 Extracted fatty acids from Gossypium hirsutum stimulatory to the seed-rotting fungus, Pythium ultimum. Phytochemistry 46, 77–82.

    Article  CAS  Google Scholar 

  • Ryu C-M, Hu C-H, Reddy M S and Kloepper J W 2003 Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytol. 160, 413–420.

    Article  CAS  Google Scholar 

  • Sasaki Y, Asamizu E, Shibata D, Nakamura Y, Kaneko T, Awai K, Amagai M, Kuwata C, Tsugane T, Masuda T, Shimada H, Takamiya K, Ohta H and Tabata S 2001 Monitoring of methyl jasmonate-responsive genes in Arabidopsis by cDNA macroarray: self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways. DNA Res. 8, 153–161.

    Article  CAS  PubMed  Google Scholar 

  • Schell M 2000 Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Annu. Rev. Phytopathol. 38, 263–292.

    Article  CAS  PubMed  Google Scholar 

  • Schenk P M, Kazan K, Manners J M, Anderson J P, Simpson R S, Wilson I W, Somerville S C and Maclean D J 2003 Systemic gene expression in Arabidopsis during an incompatible interaction with Alternaria brassicicola. Plant Physiol. 132, 999–1010.

    Article  CAS  PubMed  Google Scholar 

  • Schenk P M, Kazan K, Wilson I, Anderson J P, Richmond T, Somerville S C and Manners J M 2000 Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. 97, 11655–11660.

    Article  CAS  PubMed  Google Scholar 

  • Staswick P E, Yuen G Y and Lehman C C 1998 Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregulare. Plant J. 15, 747–754.

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto M, Toyoda K, Ichinose Y, Yamada T and Shiraishi T 2000 Cytochalasin A inhibits the binding of phenylalanine ammonia-lyase mRNA to ribosomes during induction of phytoalexin in pea seedlings. Plant Cell Physiol. 41, 234–238.

    CAS  PubMed  Google Scholar 

  • Thordal-Christensen H 2003 Fresh insights into processes of nonhost resistance. Curr. Opin. Plant Biol. 6, 351–357.

    Article  CAS  PubMed  Google Scholar 

  • Tierens K F M, Thomma B P H J, Bari R P, Garmier M, Eggermont K, Brouwer M, Penninckx I A M A, Broekaert W F and Cammue B P A 2002 Esa1, an Arabidopsis mutant with enhanced susceptibility to a range of necrotrophic fungal pathogens, shows a distorted induction of defense responses by reactive oxygen generating compounds. Plant J. 29, 131–140.

    Article  CAS  PubMed  Google Scholar 

  • Tierens K F M-J, Thomma B P H J, Brouwer M, Schmidt J, Kistner K, Porzel A, Mauch-Mani B, Cammue B P A and Broekaert W F 2001 Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens. Plant Physiol. 125, 1688–1699.

    Article  CAS  PubMed  Google Scholar 

  • Ton J, Davison S, Van Wees S C M, Van Loon L C and Pieterse C M J 2001 The Arabidopsis ISR1 locus controlling rhizobacteria-mediated induced systemic resistance is involved in ethylene signaling. Plant Physiol. 125, 652–661.

    Article  CAS  PubMed  Google Scholar 

  • Ton J, De Vos M, Robben C, Buchala A, Métraux J-P, Van Loon L C and Pieterse C J M 2002a Characterization of Arabidopsis enhanced disease susceptibility mutants that are affected in systemically induced resistance. Plant J. 29, 11–21.

    Article  CAS  PubMed  Google Scholar 

  • Ton J, Pieterse C M J and Van Loon L C 1999 Identification of a locus in Arabidopsis controlling both the expression of rhizobacteria-mediated induced systemic resistance (ISR) and basal resistance against Pseudomonas syringae pv. tomato. Mol. Plant-Microbe Interact. 12, 911–918.

    CAS  PubMed  Google Scholar 

  • Ton J, Van Pelt J A, Van Loon L C and Pieterse C J M 2002b Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol. Plant-Microbe Interact. 15, 27–34.

    CAS  PubMed  Google Scholar 

  • Turner J G, Ellis C and Devoto A 2002 The jasmonate signal pathway. Plant Cell 14, S153–S164.

    CAS  PubMed  Google Scholar 

  • Tyler B M 2002 Molecular basis of recognition between Phytophthora pathogens and their hosts. Annu. Rev. Phytopathol. 40, 137–167.

    Article  CAS  PubMed  Google Scholar 

  • Van Wees S C M, Pieterse C M J, Trijssenaar A, Van’t Westende YAM, Hartog F and Van Loon L C 1997 Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol. Plant-Microbe Interact. 10, 716–724.

    PubMed  Google Scholar 

  • van West P, Appiah A A and Gow N A R 2003 Advances in research on oomycete root pathogens. Physiol. Mol. Plant Pathol. 62, 99–113.

    Google Scholar 

  • van West P, Morris B M, Reid B, Appiah A A, Osborne MC, Campbell T A, Shepherd S J and Gow N A R 2002 Oomycete plant pathogens use electric fields to target roots. Mol. Plant-Microbe Interact. 15, 790–798.

    PubMed  Google Scholar 

  • Viet S, Worle J M, Nürnberger T, Kock W and Seitz H U 2001 A novel protein elicitor (PaNie) from Pythium aphanidermatum induces multiple defense responses in carrot, Arabidopsis, and tobacco. Plant Physiol. 127, 832–841.

    Google Scholar 

  • Vijayan P, Shockey J, Lévesque C A, Cook R J and Browse J 1998 A role for jasmonate in pathogen defense of Arabidopsis. Proc. Natl. Acad. Sci. 95, 7209–7214.

    Article  CAS  PubMed  Google Scholar 

  • Waisel Y, Eshel A, Kafkafi U, Eds. 2002 Plant Roots the Hidden Half. Third edition. Marcel Dekker, Inc., New York, Basel.

    Google Scholar 

  • Wang K L-C, Li H and Ecker J R 2002 Ethylene biosynthesis and signaling networks. Plant Cell 14, S131–S151.

    CAS  PubMed  Google Scholar 

  • Wilkes M A, Marshall D R and Copeland L 1999 Hydroxamic acids in cereal roots inhibit the growth of take-all. Soil Biol. Biochem. 31, 1831–1836.

    Article  CAS  Google Scholar 

  • Williamson V M 1999 Plant nematode resistance genes. Curr. Opin. Plant Biol. 2, 327–331.

    Article  CAS  PubMed  Google Scholar 

  • Xie D-X, Feys B F, James S, Nieto-Rostro M and Turner JG 1998 COI1: an Arabidopsis gene required for jasmonateregulated defense and fertility. Science 280, 1091–1094.

    CAS  PubMed  Google Scholar 

  • Xu Y, Chang P-F L, Liu D, Narasimhan M L, Raghothama K G, Hasegawa P M and Bressan R A 1994 Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6, 1077–1085.

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Liu F, Lechner E, Genschik P, Crosby W L, Ma H, Peng W, Huang D and Xie D 2002 The SCFCOI1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14, 1919–1935.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia A. Okubara .

Editor information

Hans Lambers Timothy D. Colmer

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Okubara, P.A., Paulitz, T.C. (2005). Root defense responses to fungal pathogens: A molecular perspective. In: Lambers, H., Colmer, T.D. (eds) Root Physiology: from Gene to Function. Plant Ecophysiology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4099-7_11

Download citation

Publish with us

Policies and ethics