Skip to main content

Acclimation to soil flooding — sensing and signal-transduction

  • Chapter
Root Physiology: from Gene to Function

Part of the book series: Plant Ecophysiology ((KLEC,volume 4))

Abstract

Flooding results in major changes in the soil environment. The slow diffusion rate of gases in water limits the oxygen supply, which affects aerobic root respiration as well as many (bio)geochemical processes in the soil. Plants from habitats subject to flooding have developed several ways to acclimate to these growth-inhibiting conditions, ranging from pathways that enable anaerobic metabolism to specific morphological and anatomical structures that prevent oxygen shortage. In order to acclimate in a timely manner, it is crucial that a flooding event is accurately sensed by the plant. Sensing may largely occur in two ways: by the decrease of oxygen concentration, and by an increase in ethylene. Although ethylene sensing is now well understood, progress in unraveling the sensing of oxygen has been made only recently. With respect to the signal-transduction pathways, two types of acclimation have received most attention. Aerenchyma formation, to promote gas diffusion through the roots, seems largely under control of ethylene, whereas adventitious root development appears to be induced by an interaction between ethylene and auxin. Parts of these pathways have been described for a range of species, but a complete overview is not yet available. The use of molecular-genetic approaches may fill the gaps in our knowledge, but a lack of suitable model species may hamper further progress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong W 1979 Aeration in higher plants. In Advances in botanical research, vol. 7. Ed. H W Woolhouse. pp. 225–332. Academic Press, London.

    Google Scholar 

  • Aschi-Smiti S, ChaÏbi W, Brouquisse R, Ricard B and Saglio P 2003 Assessment of enzyme induction and aerenchyma formation as mechanisms for flooding tolerance in Trifolium subterraneum ‘Park’. Ann. Bot. 91, 195–204.

    Article  CAS  PubMed  Google Scholar 

  • Atwell B J, Drew M C and Jackson M B 1988 The influence of oxygen deficiency on ethylene synthesis, 1-aminocyclopropane-1-carboxylic acid levels and aerenchyma formation in roots of Zea mays. Physiol. Plant. 72, 15–22.

    CAS  Google Scholar 

  • Barlow PW 1994 The origin, diversity, and biology of shoot-borne roots. In Biology of adventitious root formation. Eds. T D Davies and B E Haissig. pp. 1–23. Plenum Press, New York.

    Google Scholar 

  • Baxter-Burrrel A, Yang Z, Springer P S and Bailey-Serres J 2000 RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science 296, 2026–2028.

    Google Scholar 

  • Bertell G, Bolander E and Eliasson L 1990 Factors increasing ethylene production enhance the sensitivity of root growth to auxins. Physiol. Plant. 79, 255–258.

    Article  CAS  Google Scholar 

  • Beyer E M and Morgan P W 1969 Ethylene modification of an auxin pulse in cotton stem sections. Plant Physiol. 44, 1690–1694.

    CAS  Google Scholar 

  • Biondi S, Diaz T, Iglesias I, Gamberini G and Bagni N 1990 Polyamines and ethylene in relation to adventitious root formation in Prunus avium shoot cultures. Physiol. Plant. 78, 474–483.

    Article  Google Scholar 

  • Bleecker A B, Rose-John S and Kende H 1987 An evaluation of 2,5-norbornadiene as a reversible inhibitor of ethylene action in deepwater rice. Plant Physiol. 84, 395–398.

    CAS  Google Scholar 

  • Bollmark M and Eliasson L 1990 Ethylene accelerates the breakdown of cytokinins and thereby stimulates rooting in Norway spruce hypocotyl cuttings. Physiol. Plant. 80, 534–540.

    CAS  Google Scholar 

  • Borch K, Bouma T J, Lynch J P and Brown K M 1999 Ethylene: a regulator of root architectural responses to soil phosphorus availability. Plant Cell Environ. 22, 425–431.

    Article  CAS  Google Scholar 

  • Boru G, van Ginkel M, Trethowan R, Boersma I and Kronstad W E 2003 Oxygen use from solution by wheat genotypes differing in tolerance to waterlogging. Euphytica 132, 151–158.

    Article  Google Scholar 

  • Bouranis D L, Chorianopoulou S N, Siyiannis V F, Protonotarios V E and Hawkesford M J 2003 Aerenchyma formation in roots of maize during sulphate starvation. Planta 217, 382–391.

    Article  CAS  PubMed  Google Scholar 

  • Bradford K J and Yang S F 1981 Physiological responses of plants to waterlogging. Hort. Sci. 16, 3–8.

    Google Scholar 

  • Bragina T V, Rodionova N A and Grinieva G M 2003 Ethylene production and activation of hydrolytic enzymes during acclimation of maize seedlings to partial flooding. Russ. J. Plant Physiol. 50, 794–798.

    Article  CAS  Google Scholar 

  • Brinker M, van Zyl L, Liu W, Craig D, Sederoff R R, Clapham D H and von Arnold S 2004 Microarray analyses of gene expression during adventitious root development in Pinus contorta. Plant Physiol. 135, 1526–1539.

    Article  CAS  PubMed  Google Scholar 

  • Bryant A E 1934 Comparison of anatomical and histological differences between roots of barley grown in aerated and in non-aerated culture solutions. Plant Physiol. 9, 389–391.

    Google Scholar 

  • Buckner B, Janick-Buckner D, Gray J and Johal G S 1998 Celldeath mechanisms in maize. Trends Plant Sci. 3, 218–223.

    Article  Google Scholar 

  • Bunn H F and Poyton R O 1996 Oxygen sensing and molecular adaptation to hypoxia. Physiol. Rev. 76, 839–885.

    CAS  PubMed  Google Scholar 

  • Campbell R and Drew M C 1983 Electron microscopy of gas space (aerenchyma) formation in adventitious roots of Zea mays L. subjected to oxygen shortage. Planta 157, 350–357.

    Article  Google Scholar 

  • Campbell R B and Moreau R A 1979 Ethylene in a compacted field soil and its effect on growth, tuber quality, and yield of potatoes. Amer. Potato J. 56, 199–210.

    CAS  Google Scholar 

  • Chang C, Kwok S F, Bleecker A B and Meyerowitz E M 1993 Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262, 539–544.

    CAS  PubMed  Google Scholar 

  • Chen Y F, Randlett M D, Findell J L and Schaller G E 2002 Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. J. Biol. Chem. 277, 19861–19866.

    CAS  PubMed  Google Scholar 

  • Clark D G, Gubrium E K, Barrett J E, Nell T A and Klee H J 1999 Root formation in ethylene-insensitive plants. Plant Physiol. 121, 53–59.

    Article  CAS  PubMed  Google Scholar 

  • Cohen P, Holmes CF and Tsukitani Y 1990 Okadaic acid: A new probe for the study of cellular regulation. Trends Biochem. Sci. 15: 98–102.

    Article  CAS  PubMed  Google Scholar 

  • Colmer T D 2003 Long-distance transport of gases in plants: A perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 26, 17–36.

    Article  CAS  Google Scholar 

  • Cox M 2004 Plant movement; kinetics and hormonal regulation of hyponastic growth and petiole elongation. PhD thesis, University of Nijmegen, the Netherlands. 149 pp.

    Google Scholar 

  • Dolferus R, Ellis M, De Bruxelles G, Trevaskis B, Hoeren F, Dennis E S and Peacock W J 1997 Strategies of gene action in Arabidopsis during hypoxia. Ann. Bot. 79 (suppl. A), 21–31.

    CAS  Google Scholar 

  • Dordas C, Rivoal J and Hill R D 2003 Plant haemoglobins, nitric oxide and hypoxia stress. Ann. Bot. 91, 173–178.

    Article  CAS  PubMed  Google Scholar 

  • Drew M C 1997 Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 223–250.

    Article  CAS  PubMed  Google Scholar 

  • Drew M C, He C-J and Morgan P W 1989 Decreased ethylene biosynthesis, and induction of aerenchyma, by nitrogen-or phosphate-starvation in adventitious roots of Zea mays L. Plant Physiol. 91, 266–271.

    CAS  Google Scholar 

  • Drew M C, He C-J and Morgan P W 2000 Programmed cell death and aerenchyma formation in roots. Trends Plant Sci. 5, 123–127.

    Article  CAS  PubMed  Google Scholar 

  • Drew M C, Jackson M B and Giffard S 1979 Ethylene-promoted adventitious rooting and development of cortical air spaces (aerenchyma) in roots may be adaptive responses to flooding in Zea mays L. Planta 147, 83–88.

    Article  CAS  Google Scholar 

  • Drew M C, Jackson M B, Giffard S C and Campbell R 1981 Inhibition by silver ions of gas space (aerenchyma) formation in adventitious roots of Zea mays L. subjected to exogenous ethylene or to oxygen deficiency. Planta 153, 217–224.

    Article  CAS  Google Scholar 

  • Engelaar W M H G, Van Bruggen M W, Van den Hoek W P M, Huyser M A H and Blom C W P M 1993b Root porosities and radial oxygen losses of Rumex and Plantago species as influenced by soil pore diameter and soil aeration. New Phytol. 125, 565–574.

    Google Scholar 

  • Ernst W H O 1990 Ecophysiology of plants in waterlogged and flooded environment. Aquat. Bot. 38, 73–90.

    Article  Google Scholar 

  • Etherington J R 1983 Control of germination and seedling morphology by ethylene: differential responses, related to habitat of Epilobium hirsutum L. and Chamerion angustifolium (L.) J.Holub. Ann. Bot. 52, 653–658.

    Google Scholar 

  • Evans D E 2003 Aerenchyma formation. New Phytol. 161, 35–49.

    Google Scholar 

  • Fabijan D, Taylor J S and Reid D M 1981 Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) seedlings. II. Action of gibberellins, cytokinins, auxins and ethylene. Physiol. Plant. 53, 589–597.

    CAS  Google Scholar 

  • Fan M S, Zhu J M, Richards C, Brown K M and Lynch J P 2003 Physiological roles for aerenchyma in phosphorus-stressed roots. Funct. Plant Biol. 30, 493–506.

    Article  Google Scholar 

  • Garthwaite A J, von Bothmer R and Colmer T D 2003 Diversity in root aeration traits associated with waterlogging tolerance in the genus Hordeum. Funct. Plant Biol. 30, 875–889.

    Article  Google Scholar 

  • Gao Z, Chen Y F, Randlett M D, Zhao X C, Findell J L, Kieber J J and Schaller G E 2003 Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signalling complexes. J. Biol. Chem. 278, 34725–34732.

    CAS  PubMed  Google Scholar 

  • Geigenberger P 2003 Response of plant metabolism to too little oxygen. Curr. Opin. Plant Biol. 6, 247–256.

    Article  CAS  PubMed  Google Scholar 

  • Geneve R L and Heuser C W 1983 The relationship between ethephon and auxin on adventitious root initiation in cuttings of Vigna radiata (L.) R. Wilcz. J. Am. Soc. Hortic. Sci. 108, 330–333.

    CAS  Google Scholar 

  • Gibbs J and Greenway H 2003a Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct. Plant Biol. 30, 1–47.

    CAS  Google Scholar 

  • Gibbs J and Greenway H 2003b Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to essential processes. Funct. Plant Biol. 30, 999–1036.

    Google Scholar 

  • Gong W, Hao B, Mansy S S, Gonzalez G, Gilles-Gonzalez M A and Chan M K 1998 Structure of a biological oxygen sensor: a new mechanism for heme-driven signal transduction. Proc. Natl. Acad. Sci. USA 95, 15177–15182.

    CAS  PubMed  Google Scholar 

  • Gunawardena A H L A, Pearce D M, Jackson M B, Hawes C R and Evans D E 2001 Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.). Planta 212, 205–214.

    Article  CAS  PubMed  Google Scholar 

  • Guo H and Ecker J R 2003 The ethylene signalling pathway: new insights. Curr. Opin. Plant Biol. 7, 1–10.

    Google Scholar 

  • He C-J, Drew M C and Morgan P W 1994 Induction of enzymes associated with lysigenous aerenchyma formation in roots of Zea mays during hypoxia or nitrogen starvation. Plant Physiol. 105, 861–865.

    CAS  PubMed  Google Scholar 

  • He C-J, Finlayson S A, Drew M C, Jordan W R and Morgan P W 1996a Ethylene biosynthesis during aerenchyma formation in roots of maize subjected to mechanical impedance and hypoxia. Plant Physiol. 112, 1679–1685.

    CAS  PubMed  Google Scholar 

  • He C-J, Morgan P W and Drew M C 1992 Enhanced sensitivity to ethylene in nitrogen-or phosphate-starved roots of Zea mays L. during aerenchyma formation. Plant Physiol. 98, 137–142.

    CAS  Google Scholar 

  • He C-J, Morgan P W and Drew M C 1996b Transduction of an ethylene signal is required for cell death and lysis in the root cortex of maize during aerenchyma formation induced by hypoxia. Plant Physiol. 112, 463–472.

    CAS  PubMed  Google Scholar 

  • Hoeberichts F A, ten Have A and Woltering E J 2003 A tomato metacaspase gene is upregulated during programmed cell death in Botrytis cinerea-infected leaves. Planta 217, 517–522.

    Article  CAS  PubMed  Google Scholar 

  • Hoeren F, Dolferus R, Wu Y, Peacock W J and Dennis E S 1998 Evidence for a role for AtMYB2 in the induction of the Arabidopsis alcohol dehydrogenase (ADH1) gene by low oxygen. Genet. 149, 479–490.

    CAS  Google Scholar 

  • Huang B, Johnson J W, Nesmith S and Bridges D C 1994 Growth, physiological and anatomical responses of two wheat genotypes to waterlogging and nutrient supply. J. Exp. Bot. 45, 193–202.

    Google Scholar 

  • Hunt P W, Klok E J, Trevaskis B, Watts R A, Ellis M H, Peacock W J and Dennis E S 2002 Increased level of hemoglobin 1 enhances survival of hypoxic stress and promotes early growth in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 99, 17197–17202.

    CAS  PubMed  Google Scholar 

  • Imaseki H, Watanabe A and Odawara S 1977 Role of oxygen in auxin-induced ethylene production. Plant Cell Physiol. 18, 577–586.

    CAS  Google Scholar 

  • Jackson M B 1985 Ethylene and responses of plants to soil waterlogging and submergence. Annu. Rev. Plant Physiol. 36, 145–174.

    Article  CAS  Google Scholar 

  • Jackson M B 2002 Long-distance signalling from roots to shoots assessed: the flooding story. J. Exp. Bot. 53, 175–181.

    Article  CAS  PubMed  Google Scholar 

  • Jackson M B and Armstrong W 1999 Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol. 1, 274–287.

    CAS  Google Scholar 

  • Jackson M B, Fenning T M, Drew M C and Saker L R 1985a Stimulation of ethylene production and gas-space (aerenchyma) formation in adventitious roots of Zea mays L. by small partial pressures of oxygen. Planta 165, 486–492.

    Article  CAS  Google Scholar 

  • Jackson M B, Fenning T M and Jenkins W 1985b Aerenchyma (gasspace) formation in adventitious roots of rice (Oryza sativa L.) is not controlled by ethylene or small partial pressures of oxygen. J. Exp. Bot. 36, 1566–1572.

    CAS  Google Scholar 

  • Jackson M B and Hall K C 1993 Polyamine content and action in roots of Zea mays L. in relation to aerenchyma development. Ann. Bot. 72, 569–575.

    CAS  Google Scholar 

  • Jackson M B and Ricard B 2003 Physiology, biochemistry and molecular biology of plant root systems subjected to flooding of the soil. In Root ecology. Eds. H De Kroon and E J W Visser. pp. 193–213. Springer-Verlag, Berlin.

    Google Scholar 

  • Justin S H F W and Armstrong W 1987 The anatomical characteristics of roots and plant response to soil flooding. New Phytol. 106, 465–495.

    Google Scholar 

  • Justin S H F W and Armstrong W 1991a A reassessment of the influence of NAA on aerenchyma formation in maize roots. New Phytol. 117, 607–618.

    CAS  Google Scholar 

  • Justin S H F W and Armstrong W 1991b Evidence for the involvement of ethene in aerenchyma formation in adventitious roots of rice (Oryza sativa L.). New Phytol. 118, 49–62.

    CAS  Google Scholar 

  • Kawase M 1974 Role of ethylene in induction of flooding damage in sunflower. Physiol. Plant. 31, 29–38.

    CAS  Google Scholar 

  • Kawase M 1979 Role of cellulase in aerenchyma development in sunflower. Amer. J. Bot. 66, 183–190.

    CAS  Google Scholar 

  • Kawase M 1981 Effect of ethylene on aerenchyma development. Amer. J. Bot. 68, 651–658.

    CAS  Google Scholar 

  • Kende H 1993 Ethylene Biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 283–307.

    Article  CAS  Google Scholar 

  • Klok E J, Wilson I W, Wilson D, Chapman S C, Ewing R M, Somerville S C, Peacock W J, Doferus R and Dennis E S 2002 Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell 14, 2481–2494.

    Article  CAS  PubMed  Google Scholar 

  • Konings H and De Wolf A 1984 Promotion and inhibition by plant growth regulators of aerenchyma formation in seedling roots of Zea mays. Physiol. Plant. 60, 309–314.

    CAS  Google Scholar 

  • Konings H and Jackson M B 1979 A relationship between rates of ethylene production by roots and the promoting or inhibiting effects of exogenous ethylene and water on root elongation. Z. Pflanzenphysiol. 92, 385–397.

    CAS  Google Scholar 

  • Konings H and Verschuren G 1980 Formation of aerenchyma in roots of Zea mays in aerated solutions, and its relation to nutrient supply. Physiol. Plant. 49, 265–270.

    CAS  Google Scholar 

  • Kramer P J 1951 Causes of injury to plants resulting from flooding of the soil. Plant Physiol. 26, 722–736.

    Google Scholar 

  • Laan P, Berrevoets M J, Lythe S, Armstrong W and Blom C W P M 1989 Root morphology and aerenchyma formation as indicators of the flood-tolerance of Rumex species. J. Ecol. 77, 693–703.

    Google Scholar 

  • Laanbroek H J 1990 Bacterial cycling of minerals that affect plant growth in waterlogged soils: A review. Aquat. Bot. 38, 109–125.

    Article  Google Scholar 

  • Lamers L P M, Tomassen H B M and Roelofs J G M 1998 Sulfateinduced eutrophication and phytotoxicity in freshwater wetlands. Environ. Sci. Technol. 32, 199–205.

    Article  CAS  Google Scholar 

  • Larsen O, Nilsen H-G and Aarnes H 1986 Response of young barley plants to waterlogging, as related to concentration of ethylene and ethane. J. Plant Physiol. 122, 365–372.

    CAS  Google Scholar 

  • Liu J-H and Reid D M 1992 Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) seedlings. IV. The role of changes in endogenous free and conjugated indole-3-acetic acid. Physiol. Plant. 86, 285–292.

    Article  CAS  Google Scholar 

  • Lorbiecke R and Sauter M 1999 Adventitious root growth and cellcycle induction in deepwater rice. Plant Physiol. 119, 21–29.

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Baskin T I, Brown K M and Lynch J P 2003 Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness. Plant Physiol. 131, 1381–1390.

    Article  CAS  PubMed  Google Scholar 

  • Malik A I, Colmer T D, Lambers H and Schortemeyer M 2003 Aerenchyma formation and radial O2 loss along adventitious roots of wheat with only the apical root portion exposed to O2 deficiency. Plant Cell Environ. 26, 1713–1722.

    Article  Google Scholar 

  • McDonald M P, Galwey N W and Colmer T D 2001a Waterlogging tolerance in the tribe Triticeae: The adventitious roots of Critesion marinum have a relatively high porosity and a barrier to radial oxygen loss. Plant Cell Environ. 24, 585–596.

    Article  Google Scholar 

  • McDonald M P, Galwey N W, Ellneskog-Staam P and Colmer T D 2001b Evaluation of Lophopyrum elongatum as a source of genetic diversity to increase the waterlogging tolerance of hexaploid wheat (Triticum aestivum). New Phytol. 151, 369–380.

    Article  Google Scholar 

  • McDonald M P and Visser E J W 2003 A study of the interaction between auxin and ethylene in wildtype and transgenic ethylene insensitive tobacco during adventitious root formation induced by stagnant root zone conditions. Plant Biol. 5, 550–556.

    CAS  Google Scholar 

  • McPherson DC 1939 Cortical air spaces in the roots of Zea mays L. New Phytol. 38, 190–202.

    CAS  Google Scholar 

  • Mergemann H and Sauter M 2000 Ethylene induces epidermal cell death at the site of adventitious root emergence in rice. Plant Physiol. 124, 609–614.

    Article  CAS  PubMed  Google Scholar 

  • Musgrave A and Walters J 1973 Ethylene-stimulated growth and auxin-transport in Ranunculus sceleratus petioles. New Phytol. 72, 783–789.

    CAS  Google Scholar 

  • Nie X Z and Hill R D 1997 Mitochondrial respiration and hemoglobin gene expression in barley aleurone tissue. Plant Physiol. 114, 835–840.

    CAS  PubMed  Google Scholar 

  • Nordström A-C and Eliasson L 1984 Regulation of root formation by auxin-ethylene interaction in pea stem cuttings. Physiol. Plant. 61, 298–302.

    Google Scholar 

  • Oliver M J, Mukherjee I and Reid D M 1994 Alteration in gene expression in hypocotyls of sunflower (Helianthus annuus) seedlings associated with derooting and formation of adventitious root primordia. Physiol. Plant. 90, 481–489.

    Article  CAS  Google Scholar 

  • Palme K and Gälweiler L 1999 PIN-pointing the molecular basis of auxin transport. Curr. Opin. Plant Biol. 2, 375–381.

    Article  CAS  PubMed  Google Scholar 

  • Pennell R I and Lamb C 1997 Programmed cell death in plants. Plant Cell 9, 1157–1168.

    Article  CAS  PubMed  Google Scholar 

  • Phillips I D J 1964 Root-shoot hormone relations. II. Changes in endogenous auxin concentrations produced by flooding of the root system in Helianthus annuus. Ann. Bot. 28, 37–45.

    Google Scholar 

  • Ponnamperuma F N 1984 Effects of flooding on soils. In Flooding and plant growth. Ed. T T Kozlowski. pp. 9–45. Academic Press, London.

    Google Scholar 

  • Robbins J A, Kays S J and Dirr M A 1983 Enhanced rooting of wounded mung bean cuttings by wounding and ethephon. J. Am. Soc. Hortic. Sci. 108, 325–329.

    CAS  Google Scholar 

  • Saab I N and Sachs M M 1996 A flooding-induced xyloglucan endotransglycosylase homolog in maize is responsive to ethylene and associated with aerenchyma. Plant Physiol. 112, 385–391.

    Article  CAS  PubMed  Google Scholar 

  • Schmelz E A, Alborn H T, Engelbert J and Tumlinson J H 2003 Nitrogen deficiency increases volicitin-induced volatile emission, jasmonic acid accumulation, and ethylene sensitivity in maize. Plant Physiol. 133, 295–306.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt W and Schikora A 2001 Different pathways are involved in phosphate and iron stress-induced alterations of root epidermal cell development. Plant Physiol. 125, 2078–2084.

    Article  CAS  PubMed  Google Scholar 

  • Setter T L and Laureles E V 1996 The beneficial effect of reduced elongation growth on submergence tolerance of rice. J. Exp. Bot. 47, 1551–1559.

    CAS  Google Scholar 

  • Smirnoff N and Crawford R M M 1983 Variation in the structure and response to flooding of root aerenchyma in some wetland plants. Ann. Bot. 51, 237–249.

    Google Scholar 

  • Smits K A and Scott-Russell R 1969 Occurrence of ethylene, and its significance, in anaerobic soil. Nature 222, 769–771.

    Google Scholar 

  • Solano R, Stepanova A, Chao Q and Ecker J R 1998 Nuclear events in ethylene signalling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSEFACTOR1. Genes Dev. 12, 3703–3714.

    CAS  PubMed  Google Scholar 

  • Sowa A W, Duff S M G, Guy P A and Hill R D 1998 Altering hemoglobin levels changes energy status in maize cells under hypoxia. Proc. Natl. Acad. Sci. USA 95, 10317–10321.

    Article  CAS  PubMed  Google Scholar 

  • Subbaiah C C, Bush D S and Sachs M M 1994 Elevation of cytosolic calcium preceeds anoxic gene expression in maize suspension cultured cells. Plant Cell 6, 1747–1762.

    Article  CAS  PubMed  Google Scholar 

  • Subbaiah C C, Bush D S and Sachs M M 1998 Mitochondrial contribution to the anoxic Ca2+ signal in maize suspension-cultured cells. Plant Physiol. 118, 759–771.

    Article  CAS  PubMed  Google Scholar 

  • Subbaiah C C and Sachs M M 2003 Molecular and cellular adaptations of maize to flooding stress. Ann. Bot. 90, 119–127.

    Google Scholar 

  • Suge H 1985 Ethylene and gibberellin: Regulation of internodal elongation and nodal root development in floating rice. Plant Cell Physiol. 26, 607–614.

    CAS  Google Scholar 

  • Suttle J C 1988. Effects of ethylene treatment on polar IAA transport, net IAA uptake and specific binding of N-1-naphthylphthalamic acid in tissues and microsomes isolated from etiolated pea epicotyls. Plant Physiol. 88, 795–799.

    CAS  Google Scholar 

  • Taylor B L and Zhulin I B 1999 PAS domains: Internal sensors of oxygen, redox potential and light. Microbiol. Mol. Biol. Rev. 63, 479–506.

    CAS  PubMed  Google Scholar 

  • Thomson C J, Armstrong W, Waters I and Greenway H 1990 Aerenchyma formation and associated oxygen movement in seminal and nodal roots of wheat. Plant Cell Environ. 13, 395–403.

    Google Scholar 

  • Topa M A and McLeod K W 1986b Responses of Pinus clausa, Pinus serotina and Pinus taeda seedlings to anaerobic solution culture. I. Changes in growth and root morphology. Physiol. Plant. 68, 523–531.

    CAS  Google Scholar 

  • Topa M A and McLeod K W 1988 Promotion of aerenchyma formation in Pinus serotina seedlings by ethylene. Can. J. For. Res. 18, 276–280.

    CAS  Google Scholar 

  • Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, Luu D-T, Bligny R and Maurel C 2003 Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425, 393–397.

    Article  CAS  PubMed  Google Scholar 

  • Uren A G, O’Rourke K, Aravind L, Pisabarro M T, Seshagiri S, Koonin E V and Dixit V M 2000 Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell 6, 961–967.

    CAS  PubMed  Google Scholar 

  • Visser E J W, Blom C W P M and Voesenek L A C J 1996a Flooding-induced adventitious rooting in Rumex: morphology and development in an ecological perspective. Acta Bot. Neerl. 45, 17–28.

    Google Scholar 

  • Visser E J W, Bogemann G M, Blom C W P M and Voesenek L A C J 1996b Ethylene accumulation in waterlogged Rumex plants promotes formation of adventitious roots. J. Exp. Bot. 47, 403–410.

    CAS  Google Scholar 

  • Visser E J W, Cohen J D, Barendse G W M, Blom C W P M and Voesenek L A C J 1996c An ethylene-mediated increase in sensitivity to auxin induces adventitious root formation in flooded Rumex palustris Sm. Plant Physiol. 112, 1687–1692.

    CAS  PubMed  Google Scholar 

  • Visser E J W, Colmer T D, Blom C W P M and Voesenek L A C J 2000 Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono-and dicotyledonous wetland species with contrasting types of aerenchyma. Plant Cell Environ. 23, 1237–1245.

    Article  Google Scholar 

  • Visser E J W, Heijink C J, Van Hout K J G M, Voesenek L A C J, Barendse G W M and Blom C W P M 1995 Regulatory role of auxin in adventitious root formation in two species of Rumex, differing in their sensitivity to waterlogging. Physiol. Plant. 93, 116–122.

    Article  CAS  Google Scholar 

  • Visser E J W, Nabben R H M, Blom C W P M and Voesenek L A C J 1997 Elongation by primary lateral roots and adventitious roots during conditions of hypoxia and high ethylene concentrations. Plant Cell Environ. 20, 647–653.

    CAS  Google Scholar 

  • Voesenek L A C J and Blom C W P M 1999 Stimulated shoot elongation: a mechanism of semi-aquaticplants to avoid submergence stress. In Plant responses to environmental stresses: From phytohormones to genome reorganization. Ed. H R Lerner. pp. 431–448. Marcel Dekker Inc, New York.

    Google Scholar 

  • Wample R L and Reid D M 1979 The role of endogenous auxins and ethylene in the formation of adventitious roots and hypocotyl hypertrophy in flooded sunflower plants (Helianthus annuus). Physiol. Plant. 45, 219–226.

    CAS  Google Scholar 

  • Wiengweera A, Greenway H and Thomson C J 1997 The use of agar nutrient solution to simulate lack of convection in waterlogged soils. Ann. Bot. 80, 115–123.

    Article  Google Scholar 

  • Woltering E J, van der Bent A and Hoeberichts F A 2002 Do plant caspases exist? Plant Physiol. 130, 1764–1769.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto F and Kozlowski T T 1987 Regulation by auxin and ethylene of responses of Acer negundo seedlings to flooding of the soil. Envir. Exp. Bot. 27, 329–340.

    CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong G K, Li S, Liu B et al. 2002 A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92.

    CAS  PubMed  Google Scholar 

  • Zhou DX, Yin K, Xu ZH and Xue HW 2003 Effect of polar auxin transport on rice root development. Acta Bot. Sin. 45, 1421–1427.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J.W. Visser .

Editor information

Hans Lambers Timothy D. Colmer

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Visser, E.J., Voesenek, L.A. (2005). Acclimation to soil flooding — sensing and signal-transduction. In: Lambers, H., Colmer, T.D. (eds) Root Physiology: from Gene to Function. Plant Ecophysiology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4099-7_10

Download citation

Publish with us

Policies and ethics