Skip to main content

Part of the book series: Fluid Mechanics and its Applications ((FMIA,volume 77))

Abstract

Regular patterns of turbulent and laminar fluid motion arise in plane Couette flow near the lowest Reynolds number for which turbulence can be sustained. We study these patterns using an extension of the minimal flow unit approach to simulations of channel flows pioneered by Jiménez and Moin. In our case computational domains are of minimal size in only two directions. The third direction is taken to be large. Furthermore, the long direction can be tilted at any prescribed angle to the streamwise direction. We report on different patterned states observed as a function of Reynolds number, imposed tilt, and length of the long direction. We compare our findings to observations in large aspect-ratio experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barkley, D. and Tuckerman, L.S. (1999). Stability analysis of perturbed plane Couette flow. Phys. Fluids 11, 1187–1195.

    Article  MathSciNet  Google Scholar 

  • Barkley, D. and Tuckerman, L.S. (2005). Computational study of turbulent laminar patterns in Couette flow. Phys. Rev. Lett. 94, 014502.

    Article  Google Scholar 

  • Bottin, S., Dauchot, O., Daviaud, F. and Manneville, P. (1998). Experimental evidence of streamwise vortices as finite amplitude solutions in transitional plane Couette flow. Phys. Fluids 10, 2597–2607.

    Article  Google Scholar 

  • Coles, D. (1965). Transition in circular Couette flow. J. Fluid Mech. 21, 385–425.

    MATH  Google Scholar 

  • Coles, D. and van Atta, C.W. (1966). Progress report on a digital experiment in spiral turbulence. AIAA J. 4, 1969–1971.

    Article  Google Scholar 

  • Cros, A. and Le Gal, P. (2002). Spatiotemporal intermittency in the torsional Couette flow between a rotating and a stationary disk. Phys. Fluids 14, 3755–3765.

    Article  MathSciNet  Google Scholar 

  • Dauchot, O. and Daviaud, F. (1995). Finite-amplitude perturbation and spots growth-mechanism in plane Couette flow. Phys. Fluids 7, 335–343.

    Google Scholar 

  • Eckhardt, B. and Faisst, H. (2005). Dynamical systems and the transition to turbulence. In Laminar Turbulent Transition and Finite Amplitude Solutions, Proceedings of the IUTAM Symposium, Bristol, UK, 9–11 August 2004, T. Mullin and R.R. Kerswell (eds), Springer, Dordrecht, pp. 35–50 (this volume).

    Google Scholar 

  • Faisst, H. and Eckhardt, B. (2004). Sensitive dependence on initial conditions in transition to turbulence in pipe flow. J. Fluid Mech. 504, 343–352.

    Article  MATH  Google Scholar 

  • Hamilton, J.M., Kim, J. and Waleffe, F. (1995). Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317–348.

    MATH  Google Scholar 

  • Hegseth, J.J. (1996). Turbulent spots in plane Couette flow. Phys. Rev. E 54, 4915–4923.

    Google Scholar 

  • Henderson, R.D. and Karniadakis, G.E. (1995). Unstructured spectral element methods for simulation of turbulent flows. J. Comput. Phys. 122, 191–217.

    Article  MATH  Google Scholar 

  • Hof, B., Juel, A. and Mullin, T. (2003). Scaling of the turbulence transition threshold in a pipe. Phys. Rev. Lett. 91, 244502.

    Article  Google Scholar 

  • JimĂ©nez, J. and Moin, P. (1991). The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213–240.

    MATH  Google Scholar 

  • JimĂ©nez, J., Kawahara, G., Simens, M.P. and del Alamo, J.C. (2005). The near-wall structures of turbulent wall flows. In Proceedings of the IUTAM Conference on Elementary Vortices and Coherent Structures, S. Kida (ed.), Springer, Dordrecht, forthcoming.

    Google Scholar 

  • Lundbladh, A. and Johansson, A.V. (1991). Direct simulation of turbulent spots in plane Couette flow. J. Fluid Mech. 229, 499–516.

    MATH  Google Scholar 

  • Prigent, A. (2001). La spirale turbulente: Motif de grande longueur d’onde dans les Ă©coulements cisallĂ©s turbulents. PhD Thesis, University Paris-Sud.

    Google Scholar 

  • Prigent, A. and Dauchot, O. (2005). Transition to versus from turbulence in subcritical Couette flows. In Laminar Turbulent Transition and Finite Amplitude Solutions, Proceedings of the IUTAM Symposium, Bristol, UK, 9–11 August 2004, T. Mullin and R.R. Kerswell (eds), Springer, Dordrecht, pp. 195–219 (this volume).

    Google Scholar 

  • Prigent, A., GrĂ©goire, G., ChatĂ©, H., Dauchot, O. and van Saarloos, W. (2002). Large-scale finite-wavelength modulation within turbulent shear flows. Phys. Rev. Lett. 89, 014501.

    Article  Google Scholar 

  • Prigent, A., GrĂ©goire, G., ChatĂ©, H. and Dauchot, O. (2003). Long-wavelength modulation of turbulent shear flows. Physica D 174, 100–113.

    Article  MATH  Google Scholar 

  • Schmiegel, A. and Eckhardt, B. (1997). Fractal stability border in plane Couette flow. Phys. Rev. Lett. 79, 5250–5253.

    Article  Google Scholar 

  • Schmiegel, A. and Eckhardt, B. (2000). Persistent turbulence in annealed plane Couette flow. Europhys. Lett. 51, 395–400.

    Article  Google Scholar 

  • Toh, S. and Itano, T. (2005). Interaction between a large-scale structure and near-wall structure in channel flow. J. Fluid Mech. 524, 249–262.

    Article  MATH  Google Scholar 

  • Toh, S., Itano, T. and Satoh, K. (2005). Co-supporting cycle: Sustaining mechanism of large-scale structures and near-wall structures in channel flow turbulence. In Laminar Turbulent Transition and Finite Amplitude Solutions, Proceedings of the IUTAM Symposium, Bristol, UK, 9–11 August 2004, T. Mullin and R.R. Kerswell (eds), Springer, Dordrecht, pp. 71–83 (this volume).

    Google Scholar 

  • Tuckerman, L.S. and Tuckerman, L.S. and Barkley, D. (2002). Symmetry breaking and turbulence in perturbed plane Couette flow. Theoret. Comput. Fluid Dynam. 16, 43–48.

    MATH  Google Scholar 

  • van Atta, C.W. (1966). Exploratory measurements in spiral turbulence. J. Fluid Mech. 25, 495–512.

    Google Scholar 

  • Waleffe, F. (2003). Homotopy of exact coherent structures in plane shear flows. Phys. Fluids 15(6), 1517–1534.

    Article  MathSciNet  Google Scholar 

  • Waleffe, F. and Wang, J. (2005). Transition threshold and the self-sustaining process. In Laminar Turbulent Transition and Finite Amplitude Solutions, Proceedings of the IUTAM Symposium, Bristol, UK, 9–11 August 2004, T. Mullin and R.R. Kerswell (eds), Springer, Dordrecht, pp. 85–106 (this volume).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Barkley, D., Tuckerman, L.S. (2005). Turbulent-Laminar Patterns in Plane Couette Flow. In: Mullin, T., Kerswell, R. (eds) IUTAM Symposium on Laminar-Turbulent Transition and Finite Amplitude Solutions. Fluid Mechanics and its Applications, vol 77. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4049-0_6

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4049-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4048-1

  • Online ISBN: 978-1-4020-4049-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics